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ABSTRACT 

 
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination; 
however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in 
this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of 
hippocampal pyramidal neurons was examined. Methods: Electrophysiological whole-cell patch-clamp recordings 
from rat hippocampal pyramidal cells in primary culture were performed to investigate the effects of antibiotic 
supplements on the intrinsic excitability of cultured cells. Results: The present findings indicated that presence of 
antibiotic supplements (penicillin/streptomycin) in the culture medium altered the intrinsic electrical activity of 
hippocampal pyramidal neurons in primary culture. These alterations included: 1) depolarized resting membrane 
potential; 2) a significant enhancement in the after-hyperpolarization amplitude; 3) a significant increase in the area 
under the action potential and in the decay and rise time of the action potential; 4) a significant broadening of action 
potential and 5) a significant reduction in the firing frequency. Conclusion: These findings suggest that addition of 
antibiotic supplements to culture media influences the neuronal excitability and alters the electrophysiological 
properties of cultured neurons, possibly through changing the ionic conductance underlying neuronal excitability. 
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INTRODUCTION 
 

uring recent decades, there have been many 
studies that indicate the influence of antibiotics 
on biological organisms and cell membranes 

[1, 2]. These influences include their translocation 
across the target membrane [3], inhibition of cell wall 
biosynthesis [4] and change in permeability of cell 
membrane [5].  In addition, ion channels are the targets 
for the action of antibiotics [6]. 

One of the important properties of antibiotics which 
need to be considered by investigators is their ability to 
disrupt the ion flow through cell membranes. This 
property becomes propounded when ionophore 
antibiotics are used. The concentration of ions in the 
extracellular and intracellular media is imbalance, 
which is necessary for normal cell function [7]. 
However, the ion imbalance across the membrane can 
be disrupted by application of ionophore antibiotics 

that form either ion channels or ion-ionophore 
complexes in biological membranes [8]. 

Several studies have indicated that aminoglycosides, 
that are common antibiotics with potent bacterial 
activities [9, 10], bind to ion channel proteins and 
induce neurotoxicity by altering channel behavior. For 
example, gentamicin and neomycin reduce the current 
through nicotinic acetylcholine channels [10, 11], 
whereas apramycin enhances the conductance through 
N-methyl-D-aspartate receptor channel [12].  In 
addition, it has been reported that aminoglycosides act 
on voltage-gated ion channels, including Ca2+-activated 
K+ channels [13], L-type Ca2+ channels [14], N-type 
Ca2+ channels [15] and P/Q-type Ca2+ channels [16] as 
pore blockers [17]. 

There is also consistent evidence of strong 
interference of antibiotics with cell membrane 
excitability [18]. It has been reported that penicillin 
induces epileptiform activity and seizures both in 
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clinical situations [19] and following intracortical 
injection in rat [2, 20]. The proposed mechanism of its 
action was reported to be either synaptic or non-
synaptic actions. Penicillin produces convulsion 
through inhibition of GABA receptor chloride channels 
[21-22]. It has been also shown that administration of 
penicillin into cortex activates voltage-dependent 
calcium channels, which can be suppressed by Ca2+ 
channel blocker, nimodipine [23]. There is also 
evidence showing that penicillin induces paroxysmal 
depolarization shift, followed by prolonged after 
hyperpolarizations (AHP) in hippocampal pyramidal 
neurons, which is caused, in part, by a Ca2+-dependent 
K+ current (KCa

2+) [24]. 
Based on the above backgrounds, in the present 

study, the question of whether application of antibiotic 
supplements (penicillin/ streptomycin) affects the 
electrophysiological properties of rat hippocampal 
pyramidal neurons in culture was investigated. 

Since it has been shown that antibiotics affect 
neuronal physiological properties [25], there have been 
attempts to culture neurons in the absence of 
antibiotics [26].   
 

 
MATERIALS AND METHODS 

 
Cell culture. Hippocampal neurons were isolated 

from 36 brains of neonatal Wistar rats (1-4 days).  To 
do this, hippocampi were transferred to dissociation 
buffer containing calcium and magnesium free Hank’s 
balanced salt solution (0.976%), sodium bicarbonate 
(0.035%, Sigma, UK) and pyruvate (1 mM), HEPES 
(10 mM), pH 7.4. Then, the cells were dissociated by 
triturating (15-18 times) through a fire-polished 
Pasteur pipette. The dispersed cells were centrifuged at 
360 ×g for 1 min. Next, the cell pellet was re-
suspended in a fresh dissociation buffer. An aliquot 
was removed and mixed with an equal volume of 0.4% 
Trypan blue and counted for dye-excluding cells in a 
hemocytometer. Neurons were then plated on poly-L-
lysine-coated  coverslips  (15 mm dia-meter culture 
dishes) in a B27/neurobasal medium containing B27 
(2%), neurobasal (96.75%) and L-glutamine (200 mM, 
Sigma, UK) with or without  penicillin-streptomycin 
(100 μg/ml) at a density of  1 × 106 cell/ml. Cells were 
incubated in 5% CO2 at 37°C and fed twice weekly 
with B27/neurobasal medium. Penicillin-streptomycin 
mixture is effective against both Gram-negative and -
positive bacteria. The morphological changes and 
growth of the neurons were observed under an inverted 
phase contrast microscope. Neurons were used for 
whole-cell patch-clamp recordings 14-21 days after 
plating on coverslip. 
 

Whole-cell patch-clamp electrophysiological 
recordings. A coverslip with cultured pyramidal 
neurons was placed in a recording chamber, perfused at 
1-2 ml/min with HEPES-based artificial cerebrospinal 
fluid containing (in mM) 140 NaCl, 2 CaCl2, 1.4 KCl, 
10 HEPES, 10 glucose, pH 7.3 (NaOH) and osmolarity 
295-297 mOsm. Cultured hippocampal pyramidal 
neurons were visualized with an Olympus IX71 
inverted microscope equipped with an Olympus DP12 
camera.  Cells were identified based on their 
pyramidal-shaped soma.  

Whole-cell patch-clamp technique was used to 
record action potentials from spontaneously active cells 
in current clamp condition with zero current injection. 
A gap-free acquisition mode at room temperature (22-
25°C) was used with a Multiclamp700 B amplifier 
(Axon Instruments, Foster City, CA) equipped with 
Digidata 1440 Data Acquisition System and pCLAMP 
10 software (Axon Instruments, Foster City, CA). 
Electrophysiological recordings were filtered at 5 kHz, 
digitized at 10 kHz and stored on a personal computer 
for offline analysis.    

Patch electrodes were pulled from thick-walled 
borosilicate glass capillary (1.5 mm O.D; Clark 
Instrument, UK) with a tip resistance of 3-6 MΩ using 
a PC10 two-stage vertical puller (Narishige, Japan). 
Pipettes were filled with a solution, containing (in mM) 
145 KCl, 4 NaCl, 10 HEPES, 0.4 Na2GTP and 2 
Na2ATP, pH 7.3 (with KOH) and osmolarity 290 ± 10 
mOsm.  Under an inverted microscope, the patch 
pipette was lowered onto the cultured cell surface, and 
a gentle suction was applied to establish a high 
resistance seal.  When seal resistance was > 1 ΩM, a 
brief strong suction was applied to rupture the 
membrane for making whole-cell recording. 
Recordings were discarded if changes in series 
resistance were greater than 20%. 

The following electrophysiological parameters were 
measured under current clamp condition: resting 
membrane potential (RMP), action potential duration at 
half-width after AHP, action potential number, action 
potential amplitude, rise time and decay time of action 
potential. The AHP amplitude was measured from the 
RMP before stimulation to the peak of the 
hyperpolarization. Action potential half-width was 
measured as the duration at the half of the peak 
amplitude.    

 
Statistical analyses. In each group 14 cells were 

recorded. Significance was assessed at P<0.05 with 
two tailed Student’s t-test. Data are presented as mean 
± SEM. 
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Fig. 1. Phase contrast image of a cultured hippocampal 
neuron with a patch pipette attached to the membrane of neuron 
ready for recording. 

 
 

RESULTS 
 

Cultured pyramidal neurons were identified based on 
their triangular-shaped soma with several neurites and 
smooth membranes (Fig. 1). Culturing the neurons in 
the presence of a medium containing antibiotics 
(penicillin/streptomycin) caused firing of action 
potentials, which were followed by after depolarization 
potential (compare Fig. 2A and 2B).  

Cultured hippocampal pyramidal neurons 
significantly displayed depolarized membrane potential 
when compared with those cells cultured in the absence 
of antibiotics (Fig. 3A, P<0.05). Furthermore, the 
amplitude of AHP following action potential was 
significantly greater when cells were cultured in the 
presence of antibiotics (Fig. 3B, P<0.01).  Addition of 
antibiotic supplements to the culture medium affected 
the area under the action potential (Fig. 3C), the rise 
time constant (Fig. 3D) and also the decay time 
constant (Fig. 3E) of action potential, so that these 
parameters were significantly (P<0.001) increased 
compared to the cells cultured without antibiotic 
application. 

Furthermore, the use of antibiotics in culturing media 
was associated with lengthening action potential 
duration and lower neuronal excitability as compared 
to the cells cultured without antibiotics (Fig. 3F and 
3G, P<0.001).  

 
 

DISCUSSION 
 

Cultured pyramidal neurons even in the control 
condition had more depolarized membrane potential, 
which it could be explained by depolarizing GABA 
actions in immature neurons. In neonatal (P6-10) rabbit 
hippocampal CA1 pyramidal neurons, membrane 

potential was reported to be -53 mV [27]. It was 
suggested that GABA through GABAA receptor 
depolarizes the immature cells. This depolarizing 
action of GABA has been also reported by other 
researchers in neurons from neonatal animals [28].  

Several studies have indicated that antibiotics can 
change the membrane properties of excitable cells and 
could exert toxic effects on cultured neural network 
[29, 30].  

Findings of the present study indicated that presence 
of antibiotics in a culture medium was associated with 
a marked depolarization in the membrane potential. 
Application of antibiotics was also caused a significant 
increase in the AHP amplitude, area under the action 
potential, rise and decay times of action potential and 
action  potential  half-duration,  but   it   was   led   to  a 

  

 
 
Fig. 2. Effect of antibiotic supplements on spontaneous 

electrical activity of cultured pyramidal neurons. Representative 
traces showing spontaneous activity of hippocampal pyramidal 
neurons in primary culture without (A) and with antibiotic 
supplements in the culture media (B). Asterisk in C shows after 
depolarization potential. 
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Fig. 3. Effect of antibiotics on the electrophysiological properties of hippocampal pyramidal cells in culture condition. Histograms 

illustrate the effect of antibiotic application in culture medium on (A) resting membrane potential, (B) AHP amplitude, (C) area under 
the action potential, (D) rise time, (E) decay time, (F) action potential half-width, (G) instantaneous firing frequency. Data represent 
mean ± SEM; Asterisks represent significant differences from the group with antibiotics : *P<0.05, **P<0.01 and ***P<0.001. 
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significant decrease in the firing frequency. Consistent 
with the previous reports [1, 31], here we demonstrated 
that antibiotics (penicillin/streptomycin) depolarized 
the cultured RMP and markedly prolonged the action 
potential of hippocampal pyramidal neurons in primary 
culture. Penicillin, which is a group of β-lactam 
antibiotics, is used to prevent bacterial infection 
(Gram-positive bacteria) and has been shown to alter 
the RMP and amplitude the spontaneous action 
potential [31]. Voltage clamp study also indicated that 
penicillin decreases sodium channel current [31] that 
might be the reason for increasing the time of the rising 
phase and decreasing the firing rate of action potential 
recorded in the present work.  It has been shown that 
penicillin antagonizes GABA-mediated inhibition [32] 
and thereby induces neuronal hyperexcitability [1], 
which is in contrast to the present finding. One 
explanation for this contrast is that membrane 
depolarization induced by penicillin/streptomycin may 
lead to suppression of Na+ channels [31], and thereby 
decreases the neuronal firing frequency.  

In addition, we demonstrated that presence of 
penicillin/streptomycin in the culture medium was 
associated with a significant increase in the AHP 
amplitude and action potential duration. The increase 
in the AHP amplitude and prolongation of action 
potential duration could be due to an increase in the 
voltage-dependent calcium and/or calcium-activated 
potassium conductance. However, the action potential 
broadening which, in turn, increases the area under the 
action potential also might be due to the blockage of 
K+ current, including sodium-activated potassium 
channel current.  These findings suggest the effect of 
penicillin/ streptomycin on active properties including 
action potential parameters.  

In many neurons including hippocampal pyramidal 
neurons, a rise in intracellular concentration of Ca2+ 
contributes to generation of AHP following action 
potential [32], which, in turn, plays an important role 
in neuronal excitability and in shaping the firing 
pattern [33]. In addition, activation of KCa

2+ 

particularly big conductance KCa
2+ results in spike 

broadening. Besides big conductance KCa
2+ channel, 

KV1 channels also may contribute to the duration of 
action potential. These channels also contribute to 
action potential repolarization and thereby affect 
duration, shape and frequency of action potential [34].   

Based on the above discussion, it can be concluded 
that antibiotic supplements influence hippocampal 
pyramidal neuronal excitability, possibly through 
modulation of ion channels; however, this needs to be 
further investigated using voltage clamp technique. 
Therefore, electrophysiological data obtained from 
cultured neurons in the presence of antibiotics must be 
interpreted with a certain caution. 
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