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Abstract Lymphoma is the most frequent hematopoietic can-
cer in dogs. Canine B-cell lymphoma has been proposed as an
ideal model of human non-Hodgkin’s lymphoma (NHL).
Critical genes playing important roles in the cancer progres-
sion can be detected using the reconstruction and analysis of
gene regulatory network (GRN). GRNs are inferred using
various computational algorithms, where ARACNE is on the
most important and efficient algorithms. Here, we evaluated
the efficacy of ARACNE to reconstruct canine B-cell lympho-
ma GRN via different computational analyses. Hence, the
gene expression profile of GSE43664 was downloaded from
GEO database and differentially expressed genes were ex-
tracted using statistical analysis. Then, significant genes were
subjected to reconstruct GRN using ARACNE algorithm. Our
findings indicated that ARACNE inferred a logic biological
network with 387 nodes (genes) and 845 edges (interactions).
The inferred network followed a biological scale-free pattern,
because many nodes had low numbers of interactions and a
few nodes were highly connected. Additionally, node degree
distribution showed a decreasing linear pattern. Although the
network had 80 connected components, most nodes (71.5 %)
contributed in a sub-network implying a strong biological
network.

Keywords Gene regulatory network (GRN) . Canine B-cell
lymphoma . ARACNE . Cancer

Introduction

Lymphoma is the most frequent hematopoietic cancer in
dogs with the annual incidence of 13 to 24 cases per
100,000 dogs (MacEwen 1990; Marconato et al. 2013).
Environmental factors and genetic susceptibility were
considered as possible causes of the canine lymphoma.
Hypercalcemia is the most common paraneoplastic symp-
tom in canine lymphoma (Zandvliet 2016). Additionally,
previous investigations proposed canine B-cell lympho-
ma as an ideal model of human non-Hodgkin’s lympho-
ma (NHL), where both entities contain similar pathologic
and molecular characteristics (McCaw et al. 2007;
Richards et al. 2013; Zamani-Ahmadmahmudi et al.
2015; Zamani-Ahmadmahmudi et al. 2016). For exam-
ple, genomic instability and clinical-pathologic and his-
tologic features were found to be similar in canine B-cell
lymphoma and human NHL. Furthermore, some recent
cancer therapy agents including ABT526, GS-9219, and
I-kappa kinase inhibitors could efficiently provide prom-
ising results in dogs with NHL (Marconato et al. 2013).

In the recent years, analysis of the gene expression data and
network biology has been extensively tested to derive prog-
nostic gene signatures in various cancers. The findings re-
vealed that extracted gene signatures could robustly categorize
tumor subtypes and predict outcome in patients with cancer
(Alizadeh et al. 2000; Rosenwald et al. 2002; Lossos et al.
2004). One of the most important methods to detect critical
(hub) genes in the biological pathways playing significant
roles in cancer progression is the reconstruction of gene reg-
ulatory network (GRN) using the various computational algo-
rithms (Bansal et al. 2007; Agnelli et al. 2011; de Matos et al.
2013; Emmert-Streib et al. 2014). Then, via different pack-
ages, the reconstructed GRNs will be explored to detect hub
genes. Among different computational algorithms, ARACNE
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(Algorithm for the Reconstruction of Accurate Cellular
Networks) as a member of the family of information-
theoretic approaches is routinely used to infer GRNs (Butte
and Kohane 2000; Margolin et al. 2006; Bansal et al. 2007).
Via an information-theoretic structure, ARACNE infers direct
relationships between target genes and transcriptional regula-
tor proteins. This method can detect co-expression interac-
tions in a gene expression dataset (microarray data and
RNA-Seq data) with low inaccuracy rate. This approach facil-
itates clarifying functional mechanisms involving in various
cellular processes (Margolin et al. 2006; Lachmann et al.
2016). However, this approach was majorly used in the cancer
biology studies (Agnelli et al. 2011; Liang et al. 2012; Bae
et al. 2013; de Matos et al. 2013). de Matos et al. (2013) that
have inferred human B-cell lymphoma GRN using three mu-
tual information-based GRN inference methods: WGCNA,
C3Net, BC3Net, and ARACNE. Additionally, using a recon-
struction of a transcriptional network by ARACNE approach,
Agnelli et al. (2011) identified the most critical genes associ-
ated with poor prognosis in patients with multiple myeloma.
There is rare information about GRNs of the different tumors
in the veterinary pathology. Hence, in this study, we aimed to
investigate ARACNE efficacy to infer GRN in canine B-cell
lymphoma as one of the most important cancers in the com-
parative oncology.

Materials and methods

Microarray data

We downloaded gene expression data GSE43664 (platform:
Affymetrix Canine Genome 2.0 Array), which has been
provided and deposited by Richards et al. (2013) in GEO
database. This dataset contains expression data of more than
43 × 103 probsets in 58 dog samples with B-cell lymphoma
(each gene may have one or more probsets). Samples majorly
comprised diffuse large B-cell lymphomas (DLBCL), histo-
pathologically. More details about studied cases were provid-
ed in the GEO website (http://www.ncbi.nlm.nih.gov/geo).
The raw dataset was downloaded at CEL file format and
converted to the expression value using affy package
(Gautier et al. 2004) in R program (http://www.r-project.
org/). Then, dataset file was imported into geWorkbench
(Floratos et al. 2010) software and then non-useful probsets
detected and deleted. In this process, probsets without Entrez
IDwere deleted and in genes with the multiple probsets; genes
with the highest expression variation were remained.
Differentially expressed genes (DEGs) (three or more samples
varying by at least fourfold from the median) were detected
using method proposed by Richards et al. (2013) in Cluster
3.0 (Eisen et al. 1998).

Inferring of gene regulatory network using ARACNE
algorithm

GRN was reconstructed using ARACNE algorithm (Margolin
et al. 2006) available as a geWorkbench plug-in. In this meth-
od, indirect interactions inferred by co-expression methods
were removed by means of an information-theoretic approach
(Margolin et al. 2006). To this purpose, different parameters
were set as the following: mode: complete, algorithm: adap-
tive partitioning, threshold type: p value = 0.01 correct by no.
of markers, and DPI tolerance: apply = 0.15.

Assessment of the reconstructed network

The reconstructed network was imported to the
Cytoscape (Shannon et al. 2003) software package for
subsequent analyses. The network was analyzed based
on the topological parameters (i.e., number of nodes,
diameter, radius, centralization, density, heterogeneity,
number of connected components, number of the shortest
paths, characteristic path length, and average number of
neighbors) and central parameters (i.e., node degree dis-
tribution and neighborhood connectivity distribution)
using NetworkAnalyzer plug-in. In this analysis, diameter
is the highest distance between two nodes, where the
distance is the minimum number of edges that connected

Fig. 1 Topological representation of the reconstructed canine B-cell
lymphoma GRN using ARACNE algorithm
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two nodes, radius is the smallest distance between two
nodes, and centralization indicates how the network to-
pology resembles a star structure. In a value between 0
and 1, density indicates how densely the network is pop-
ulated with edges, heterogeneity indicates the affinity of
a network to contain hub markers, number of connected
components is the number of sub-networks that consti-
tute a network, number of the shortest paths is the min-
imum numbers of edges that form a path, and character-
istics path length is the average shortest path length.

Results and discussion

Our analysis revealed that 1108 out of 43,035 probsets (genes)
were differentially expressed in the investigated samples.
Expression data of these genes were subjected to reconstruct
GRN. Then, GRN was inferred using ARACNE algorithm.
Topological representation of the reconstructed GRNwas pre-
sented in Fig. 1. The network contained 387 nodes (genes) and
845 edges (interactions) (Fig. 1 and Table 1).

The inferred network showed a biological scale-free pattern
(Barabási and Oltvai 2004), as many nodes had low numbers
of interactions and a few nodes were highly connected
(Fig. 1). This feature was quantitatively confirmed, where
node degree distribution presented a linear descending pattern
as shown in Fig. 2a. The neighborhood connectivity distribu-
tion was also presented in Fig. 2b. The neighborhood connec-
tivity of a node n is defined as the average connectivity of all
neighbors of n (Maslov and Sneppen 2002). The neighbor-
hood connectivity distribution of our network was in a de-
creasing way indicating edges between low connected and
highly connected nodes prevailed in the network (Maslov
and Sneppen 2002).

Lower number of connected component implies a stronger
network (Shannon et al. 2003) (http://med.bioinf.mpi-inf.
mpg.de/netanalyzer/index.php). Although the inferred GRN
included 80 connected components, our network showed a
strong connectivity because 277 out of 387 nodes (71.5 %)
participated in only one sub-network (Fig. 1 and Table 1).
Additionally, on average, each node in the network had 3.5
neighbors. The network density, as a normalized version of
average number of neighbors, was calculated 0.009 indicating
relatively loose network. The network centralization, indicat-
ing how the network topology resembles a star structure
(Diestel 2006), was calculated 0.366. It seems that higher
number of connected components prevented the network to
have a centralization value close to 1. Furthermore, the net-
work clustering coefficient was 0.164 (normal range 0–1)
(Table 1). Because nodes with less than two neighbors (num-
ber of connected component = 80) having a clustering coeffi-
cient of 0 (Watts and Strogatz 1998) were prevalent in our
network (Fig. 1), the network clustering coefficient was close
to 0.

In this study, we tried to infer GRN of the canine B-cell
lymphoma. Based on topological pattern and subsequent
analyses, a logic biological network was reconstructed
implying acceptable efficacy of the ARACNE algorithm.

Table 1 Simple topological parameters of GRNs resulted from
ARACNE algorithm

Parameter Value

Number of nodes 387

Network diameter 8

Network radius 1

Network centralization 0.36

Network density 0.009

Network heterogeneity 2.25

Number of connected components 80

Number of the shortest paths 76,528 (51 %)

Characteristic path length 3.06

Average number of neighbors 3.57

Fig. 2 Node degree distribution (a) and neighborhood connectivity
distribution (b) of the inferred GRN. Both distributions followed a
descending linear pattern. In a, Y and X axes presented number of
nodes and number of neighbors, respectively. Furthermore, in b, Y and

X axes presented the average of the neighborhood connectivities and
number of neighbors, respectively. Red oblique line shows fitted power
law

Comp Clin Pathol (2017) 26:121–125 123



Using Bfake^ gene expression data generated by a com-
puter model of gene regulation, Bansal et al. (2007) have
tested performance of the various GRN algorithms. Their
results revealed that ARACNE could efficiently predict
GRNs of 10, 100, and 1000 genes with the acceptable
sensitivity and positive predictive value (PPV). The pre-
vious investigation showed that ARACNE could be reli-
ably used to reconstruct networks in the steady-state data
and data with few experiments, as compared with the
number of genes (similar to our samples) (Bansal et al.
2007). However, this algorithm cannot perform well for
short time series data. Additionally, it is more reliable to
run ARACNE on minimum 100 samples to providing
more realistic networks (Margolin et al. 2006).

Our study could be a start point to employ new
computational/bioinformatics approaches exploring ani-
mal cancers in more advance ways. The previous inves-
tigations have majorly focused on experimental methods/
approaches to study cancer biology in animal tumors
(Kiupel et al. 1999; McCaw et al. 2007; Mudaliar et al.
2013; Richards et al. 2013) and bioinformatics analyses
have had minor role in the study workflows. At current
study, using ARACNE, we could infer a logic biological
GRN for canine B-cell lymphoma. In the next step, the
future studies should identify important (hub) genes and
critical sub-networks (modules) of the inferred network.
These hub genes and modules are playing important
roles in various cancer mechanisms (Bansal et al. 2007;
Agnelli et al. 2011; Zamani-Ahmadmahmudi et al. 2015).
Additionally, the future studies could evaluate efficacy of
the ARACNE comparing to other developed algorithms
to infer GRN in canine B-cell lymphoma.

To the best of our knowledge, gene expression data-
bases such as GEO and ArrayExpress contain rare and
incomplete expression datasets on canine cancers com-
paring to the human counterparts. Using datasets with
the larger and complete samples, future studies will pro-
vide more reliable and stronger gene regulatory networks
of the various cancers in dog as an ideal animal model
for human oncology investigations.
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