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Abstract: 

A copper anode was used in sodium carbonate solutions to prepare nanoparticles of copper 

carbonates. To reach the best results, the parameters affecting the preparation procedure were 

evaluated and optimized based on the Taguchi robust design (TRD), and it was found that the size 

of the resulting copper carbonates particles could be managed by applying optimal values of 

parameters such as electrolysis voltage, carbonate concentration, stirring rate and the temperature. 

To evaluate how significantly the factors influence the size of the particles, analysis of variance 

(ANOVA) was used, and the results indicated that the electrolysis voltage, carbonates 

concentration, and stirring rate affect the dimensions of the particles to a high degree. The optimal 

conditions were also evaluated. Further, the copper carbonate particles were used as the precursor 

in a solid-state thermal decomposition reaction intended for forming nanostructured CuO particles. 

All products were studied through SEM, XRD, TG-DTA, and FT-IR techniques and also those of 

optimal properties were evaluated as photocatalytic species for application in the UV-induced 

degradation (UVID) of methylene blue (MB). 
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1. Introduction 

Carbonates of metallic species have been thoroughly studied recently and have found 

widespread industrial applications in areas such as plastic, paper, rubber and paint industries. The 

compounds are also considered as excellent precursors for preparing metal oxides [1]. Being a 

basic salt, copper carbonate has widespread applications in pigments, insecticides, fungicides, as 

astringent in pomades or as an antidote for phosphorus poisoning, as well as in catalysts for organic 

reactions, desulfurization of crudes, and wood additives [2]. Furthermore, copper oxide 

nanostructures have been used as pigments in ceramics, magnetic storage media, narrow-band p-

type semiconductors, photothermal optical equipment, dry-cell batteries, supercapacitors, sensing 

instrument and photo-detectors, solar cells, catalysts and photo-catalysts, thermally-improved 

nano-fluids, field emission displays (FED), and extra-hydrophobic surfaces [3-6]. 

Removing pollutants from wastewaters and air has been an important objective during the 

past decades, and the increase in the populations and the subsequent incremental need for resources 

has added to its importance. Various organic and inorganic chemicals penetrate and pollute 

subterranean and surface waters, among which the most common and harmful organic species 

originate from pesticides, sewage and industrial wastes [7-9]. Semiconducting materials have 

proven to offer excellent catalytic properties in photo-induced reactions involving the degradation 

of organic molecules in various media and are hence classified as photocatalysts. Using these 

compounds various inorganic and organic pollutants can be efficiently and rapidly removed from 

wastewaters, through cost-effective processes with environment-friendly products, e.g. CO2, H2O, 

and inorganic ions [10-12]. In the light of those mentioned above, the copper carbonate and oxide 

nanostructures prepared under the optimal conditions of the present work were also evaluated as 
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efficient photocatalysts for eliminating MB from its water solutions, through a UV-induced 

degradation process.  

For optimizing the process of the carbonate precursor synthesis, a fractional factorial 

experiment design was used. Such experiment design procedures lead to considerable decreases in 

the number of experiments required for the optimization, and also make it possible to acquire more 

information from the experimental data. The principle and procedure of the method used, i.e., 

Taguchi robust design (TRD) can be found in detail in different references and is hence skipped 

here [13-17].  

 

2. Experimental Section 

2.1. Materials  

Analytical grade Na2CO3 was obtained from Merck Company (Germany). A 1×3 cm2, 99% copper 

sheet and a steel sheet of identical dimensions were used as the anode and cathode in the carbonate 

solutions, respectively. The electrodes were repeatedly polished using a wire brush and rinsed with 

distilled water before being immersed in the electrolyte solutions. The carbonate solutions were 

prepared through dissolving known amounts of Na2CO3 in distilled water. The electrodes were 

externally connected to a programmable power supply system for adjusting the applied voltages. 

The reaction cell was placed on a magnetic hot plate. The concentration, applied voltage, 

temperature and stirring rate applied in each experiment, were determined based on the TRD 

results (Table 1). The electro-synthesis reaction was performed through applying a direct current 

to the electrodes, and after the reaction was over, the cathode and anode were removed from the 

system, and the solid product was collected by centrifuging the solution. This solid was next 

repeatedly washed with distilled water, followed by washing with ethanol and drying at 70 ºC for 
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120 minutes. The values of the evaluated parameters, i.e., the carbonate concentration, applied 

voltage, temperature and stirring rate used according to the TRD are summarized in Table 1. 

The copper oxide nanoparticles were prepared through thermally decomposing the finest carbonate 

nanoparticles prepared in a furnace at 350 °C for 120 minutes, in an air atmosphere. The typical 

experiments were performed by heating 0.5 gram of the carbonate salt in an alumina crucible 

sealed with aluminum foil.  

2.2. Characterization of the nanoparticles 

The carbonate and oxide samples were initially studied on a ZEISS sigma/up field emission 

scanning electron microscope (FE-SEM). The nanoparticles were loaded onto the instrument using 

a gold film, prepared using a BAL-TEC, SCD005 sputter coater. X-ray diffraction (XRD) 

evaluations of the nanoparticles were performed using a Rigaku D/max 2500 V diffractometer 

with a graphite monochromator and Cu target.  FT-IR spectra were also recorded in the 4000–500 

cm–1 range, using KBr pellets and a Perkin-Elmer (spectrum two) instrument. To perform the 

thermogravimetric (TG) and differential thermal analyses (DTA) studies on the samples, 32 mg of 

the copper carbonate sample were investigated on a Perkin-Elmer STA 6000 analyzer while 

heating the samples from 25 to 750 ºC, with a heating rate of 10 ºC/min, under a nitrogen 

atmosphere. Quantitative UV-VIS analyses of the MB content of photo-catalytically treated 

samples were performed using a Perkin- Elmer Lambda 25 UV/VIS instrument. 

2.3. Photocatalytic evaluations 

The carbonate and oxide nanoparticles were used as photocatalysts for degrading methylene 

blue (MB) under UV light in a cylindrical Pyrex double pipe air-lift photoreactor. The UV source 

was a high-pressure mercury lamp (250 W, λ>280 nm) placed inside the reactor. 
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0.05 g of the nanoparticles were added to 500 mL of a 5 mg/L solutions of MB in water and 

in order to reach the adsorption equilibrium, the resulted solution was aerated in the course of 30 

min thru a photo-catalytic reactor composed of quartz double pipe air lift coupled with magnetic 

stirring. After determining the initial concentration of MB (C0) in the reaction mixture, it was 

subjected to UV irradiation under a constant flow of air, at 25 °C, and the changes in the MB 

concentrations during the course of the reaction (Ct) was determined through monitoring the 

absorbance (At) of samples taken at 10 minutes intervals at the λmax of MB using the Lambert-

Beer (eq.1) [10, 11, 17-25]: 

A = εbC      Eq. 1 

(A: absorbance of light, ε: molar absorptivity, b: the path length of light through the sample, 

and C: concentration of the analyte). Further, by dividing the equation at time t to itself at time 0 

eq.2 was derived: 

A

A0
=

C

C0
       Eq. 2 

also, the efficiency of the photocatalytic reaction was calculated using eq.3: 

Degradation efficiency (%) =
A0−At

A0
× 100        Eq. 3        

 

2.4. Kinetics of the photocatalytic reaction 

The kinetics of the UV-induced degradation of MB was evaluated using the Langmuir-

Hinshelwood model which is expressed as follows [10, 11, 17, 19-25]: 

−
dC

dt
= kappC                 Eq. 4 

(C: concentration of the organic species, kapp: reaction rate, t: degradation time, and - 
𝑑𝐶

𝑑𝑡
: 

degradation rate). 
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3. Results and discussion  

3.1. Optimization of the electro-synthesis reaction  

Gaining control over the size of particles produced through electro-synthesis processes is an 

intricate process requiring a thorough understanding of the effects of the individual parameters on 

the size of the product. This can, however, be simplified using statistical optimization methods 

[14]. In this case, the effective variables were considered to be the concentration of carbonate ion, 

the applied voltage, reactor temperature and stirring rate, which were studied at the tree levels 

presented in Table 1. 

The FESEM images of some of the copper carbonate samples prepared under various 

experimental conditions according to Table 1 are illustrated in Fig. 1, revealing the particles to 

have different dimensions and hence confirming the dependence of the size of copper carbonate 

particles on the operating conditions. Table 1 also contains the average size of the copper carbonate 

particles prepared under the conditions of each runs, which can be used as an input for determining 

the effect of each level of the parameters on the average size of the particles , and the results are 

plotted as bar graphs in Fig. 2. Fig. 2a illustrates the effect of CO3
2- concentration on the 

dimensions of the CuCO3 particles at the three levels of 0.01, 0.05 and 0.1 M. It can be seen that 

0.01 M led to the production of the finest copper carbonate particles. Further, the influence of the 

applied voltage (i.e., 3, 5, and 8 V) on the size of the CuCO3 particles is illustrated in Fig. 2b, 

indicating the optimal results to be obtainable at 8 V. The results of studying the effect of the 

temperature of the reactor at the three levels of 0, 25 and 50 ºC (Fig. 2c) revealed the parameter to 

have negligible. Eventually, the effect of the stirring rate at 100, 500 and 900 rpm (Fig. 2d) proved 

this parameter an effective one, and the best results regarding the size of the prepared particles 

were observed at 500 rpm.  
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By performing an analysis of variance (ANOVA) on the experimental data, the significance 

of the variables in determining the size of the particles was evaluated, and the results are shown in 

Table 2. At a confidence interval of 90%, the ANOVA results proved that the concentration of the 

carbonate ion, the applied voltage and the stirring rate to have significant roles in defining the 

dimensions of the product particles. It should be noted that the study did not consider the possible 

interactions among the variables. The conditions leading to the optimal results were hence 

determined to be 0.01 M for the carbonate concentration, 8 V as the applied voltage and 500 rpm 

as the stirring rate of the. 

Based on the TRD considerations [26-29], the optimal size of the particles can be predicted 

using the following expression:  

)()()(
N

T
R

N

T
V

N

T
C

N

T
Y zyxopt   

(T/N: the average size of CuCO3 particles obtained through the designed experiments; T and 

N being the summation of all results and the total number of experiments; Yopt: The optimal size 

of the CuCO3 particles, Cx: CO3
-2 concentration, Vy: applied voltage, and Rz: stirring rate). The 

confidence interval (C.I.) for the size of the optimally-prepared nanoparticles is obtained using the 

following equation [30-32]:  

e

e

n

VffF
CI

).,( 21

 

(Ve: variance of error, Fα(f1,f2): the critical value for F at the level of significance α (90%), f1 

and f2 : the degree of freedom (DOF), while f1 is the DOF for mean (always 1) and f2 is the DOF 

for the error term, and ne :the number of effective replications). ne is determined using the equation 

below: 

  conditionsoptimumatfactorsallofDOFalwaysmeanofDOF

erimentsofNumber
ne




1

exp
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The calculations revealed that the size of the optimal particles to be around 14 ± 8 nm.  Fig. 

3, contain the FESEM and TEM images of the copper carbonate particles prepared under the 

above-mentioned optimal conditions revealing the average size of the particles to be about 21 nm 

which is comparable to the calculated results (i.e., 14 ± 8 nm). These copper carbonate 

nanoparticles were subjected to further structural, composition, thermal and optical analyses and 

further used as the precursor for preparing CuO nanoparticles. 

3.2. Characterization of the CuCO3 nanoparticles 

A sample FTIR spectrum of the optimal CuCO3 particles is shown in Fig. 4. The peaks were 

assigned to the vibrations of the carbonate ion from 400 to 1600 cm−1. The strong wide band at 

around 1403 cm−1 was attributed to the asymmetric stretching vibrations of the carbonate ion. The 

band at 1512  cm−1 was assigned to the υ3 mode of the CO3
2- ion and those at 1098, 1054, 889, 

817, 761 and 723 cm−1 correspond to the stretching modes of this anion [1, 6, 10, 33]. Also, the 

stretching and bending vibrations of the hydroxyl groups of the absorbed residual water can be 

seen at 3436 cm−1 [34, 35].  

TG/DTA, as suitable techniques for studying the thermal stability of inorganic materials [22, 

36], were also performed on the carbonate and the graphs are illustrated in Fig. 5. The TG graph 

reveals that the carbonate sample passes two mass loss stages. The initial step (1), which was 

attributed to the removal of the surface-adsorbed water accounts for a 2.5 % weight loss and is 

observed between 30 and 200 °C. The next step (2) comes to a weight loss of around 28 % of the 

sample and takes place from 200 to 350 °C. This latter weightloss was attributed to the loss of  

CO2 and CO species from the sample. This phenomenon was very evident between 200 and 300 

°C and could not be observed over 350 °C, which indicated that the carbonate salt is completely 

decomposed to the oxide salt after this temperature. The thermal treatment of the carbonate salt 
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led to a total mass loss of 30.5 %  in the range of 30 to 350 °C, and 350 °C was used as the optimal 

temperature for the formation of CuO. 

3.3. Preparation of CuO nanoparticles 

Based on the above observations, CuO nanoparticles were prepared through calcinating optimally 

prepared CuCO3 nanoparticles at 350 °C for 120 minutes. The SEM  and TEM images of the final 

product are shown in Fig. 6 reavling the product to be composed of spherical particles of about 

30 nm in diameter. 

The nanoparticles were also studied by XRD and FT-IR techniques. Fig. 7 illustrates the XRD 

pattern of the CuO nanoparticles. The diffraction peaks in this figure fully comply with monoclinic 

CuO phase according to the JCPDS 01-080-1916 data (space group Cc) with cell parameters of a: 

4.6927, b: 3.4283 and c: 5.1370 Å. The pattern is in favor of the high crystallinity and purity of 

the CuO nanoparticles. Using the Debye–Scherrer equation (as follow) the average crystallite size 

of the particles were determined to be about 33 nm. 

D =
0.9λ

β Cosθ
 

(λ:0.154059 nm, β: corrected band broadening, and θ:Bragg angle [23, 37]).  

A typical FT-IR spectrum of the copper oxide sample (Fig. 8) which has lost its carbonate ions at 

350 °C does not reveal the bands associated with the presence of carbonate ions and instead shows 

bands at 537 and 601 cm−1, due to the presence of copper oxide. The results were found to agree 

with those reporting the formation of copper oxide elsewhere [3].  

3.4. Photo-degradation of methylene blue (MB) 

The results obtained through monitoring the photocatalytic activities of the optimal carbonate and 

oxide samples (Fig. 9) revealed the photodegradation performance of the two particles. Fig. 10 

shows the changes in the MB concentration in response to UV irradiation, like diagrams of C/C0 
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and degradation efficiency vs. illumination time. It can be seen that after 70 minutes the highest 

degradation yields (i.e. 99 and 96 % for CuCO3 and CuO) is reached. 

Normally MB as the pollutant dye in the attendance of a photo-catalyst damages as the ammonium, 

sulfate, nitrate, and carbon dioxide through the subsequent reaction[38, 39]:  

MB + Pr2(WO4)3 or TiO2→ CO2 + H2O + NO3
− + NH4

+ + SO4
2− 

A pseudo 1st order kinetic behavior can be observed for the UV-induced degradation of MB 

degradation in the presence of CuCO3 and CuO nanoparticles (Fig. 11) and the corresponding rate 

constant can be obtained from the slop of the linear regression and the photocatalytic parameters 

are summarized in Table 3, indicating the nanoparticles as promising photocatalysts for the 

removal of organic pollutants. 

4. Conclusion 

An electrosynthesis approach was used and optimized for the preparing CuCO3 nanoparticles. The 

approach was found to offer a controllable procedure for the synthesis of CuCO3 nanoparticles. 

The optimal reaction parameters were optimized using the Taguchi robust design (TRD). The 

result showed that the concentration of the copper and carbonate ions have substantial effects on 

the particle size of the product. The optimal carbonate nanoparticles were around 21 nm in 

diameter, and thermal treatment of this optimal product revealed the samples to undergo two stages 

decomposition leading to the formation of copper oxide particles of about 30 nm in diameter. The 

optimized methods offered advantages of simplicity, low cost, high output, and good product 

purity, further to producing ultra-fine products and the potential for scale-up. Both carbonate and 

oxide nanoparticles were next used evaluated as photocatalysts for removing MB from aqueous 

solutions and led to MB removal yields of 99 and 96 % after 70 min of UV-irradiation. 
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Figure legends: 

Fig. 1. SEM images of copper carbonate nanoparticles obtained at different runs, presented in Table 1, by 

electrosynthesis method: a run 2, b run 4, c run 6 and d run 9 

Fig. 2. Average effects of investigated variables at different levels on the diameter of the copper carbonate 

nanoparticles (a) Concentration of carbonate solution, (b) Voltage, (c) Temperature and (d) Stirring 

rate 

Fig. 3. (a) SEM image (b) TEM of copper carbonate nanoparticles obtained at optimum conditions of 

electrosynthesis process 

Fig. 4. FT-IR spectra of the copper carbonate nanoparticles obtained under optimum conditions 

Fig. 5. TG/DTA curves for thermal decomposition reaction of copper carbonate prepared via 

electrosynthesis method under optimum conditions; sample mass 32.0 mg; heating rate 10 ºC/min; 

nitrogen atmosphere 

Fig. 6. (a) SEM image (b) TEM image of copper oxide nanoparticles obtained from thermal decomposition 

reaction of precursor 

Fig. 7. XRD pattern of the copper oxide prepared by thermal decomposition reaction of copper carbonate 

Fig. 8. FT-IR spectra of the copper oxide nanoparticles obtained by thermal decomposition reaction of 

copper carbonate 

Fig. 9. UV–Vis absorbance spectrum of MB at different time intervals on irradiation using 0.1 g/L, (a) 

copper carbonate and (b) copper oxide nanoparticles as a photocatalyst 

Fig. 10. Photocatalytic degradation of MB solution under UV irradiation using, (a) copper carbonate and 

(b) copper oxide nanoparticles as a photocatalyst 

Fig. 11. Pseudo first order kinetics of MB degradation for, (a) copper carbonate and (b) copper oxide 

nanoparticles 
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Table 1. OA9 (34) experimental design and average particle size of produced copper carbonate as results 

via electrochemical reaction 

Experiment 

number 

Concentration 

of CO3
2- (M) 

Voltage (V) Temperature  

(◦C) 

Stirring rate 

(rpm) 

Average particle 

size (nm) 

1 0.01 3 0 100 38 

2 0.01 5 25 500 35 

3 0.01 8 50 900 59 

4 0.05 3 25 900 170 

5 0.05 5 50 100 112 

6 0.05 8 0 500 95 

7 0.1 3 50 500 64 

8 0.1 5 0 900 105 

9 0.1 8 25 100 45 
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Table 2. Results of ANOVA for copper carbonate nanoparticles via electrochemical synthesis rout 

by OA9 (34) matrix while diameters of synthesized CuCO3 particles (nm) are as responses 

     Pooleda 

Factor Code DOF S V DOF S´ F´ P´(%) 

Carbonate concentration (M) CO3 2 10368.7 5184.3 2 10326.7 246.8 65.8 

Voltage (V) V 2 948.7 474.3 2 906.7 22.6 5.8 

Temperature (◦C) T 2 42 21 - - - - 

Stirring rate (rpm) R 2 4324.7 2162.3 2 4282.7 4282.7 27.3 

Error E - - - 2 - - 1.1 

a The critical value was at 90% confidence level; pooled error results from pooling insignificant effect 
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Table 3. Pseudo First Order Reaction Rate Constant and conversion efficiency of photocatalysts at 70 min 

 K (min -1) Conversion (%) 

Copper carbonate 0.0646 99 

Copper oxide 0.0464 96 
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Fig. 1  
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Fig. 3 
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Fig. 4 
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Fig. 6 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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