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A different molecular mechanism underlying human papilloma virus (HPV)-
negative and HPV-active pathogenesis is responsible for better response to thera-
pies in HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). In this
study, we aim to provide an insight into molecular basis underlying this distinction
and introduce possible targeted therapies for each phenotype. Using weighted gene
co-expression network analysis (WGCNA), our aim was to identify not only differ-
entially expressed genes but also significant coexpressed gene modules responsible
for genotype and phenotype distinctions between HPV-active and HPV-negative
samples. Recognizing differentially expressed genes in each module indicates key
regulators that may be ignored in an analysis only based on differential gene
expression study. Two modules are investigated in detail in our analysis, related to
JAK–STAT dysregulation in HPV-negative samples, and disruption of cell fate
commitment possibly induced by overexpression of BCL2 is observed in the HPV-
active cohort. The existence of differentially expressed oncogenes and potential
miRNA role is investigated in our analysis. The other significant module related to
keratinization, keratinocyte differentiation, and intermediate filament cytoskeleton
organization was discovered in the resulting co-expression network. A considerable
number of genes was downregulated in HPV-active samples in the relative module,
postulating the impairment of cytoskeleton-related gene expression caused by HPV
intervention.

KEYWORDS

BCL2, biological module discovery, co-expression network, HPV-associated
OPSCC, JAK–STAT pathway, keratinization, weighted gene co-expression
analysis

1 | INTRODUCTION

Human papilloma virus (HPV) is a group of heterogeneous
viruses with more than 200 identified subtypes, among
which 15 are associated with high tumourigenic potential.
These are nonenveloped double-stranded DNA viruses with
an affinity to epithelium layer of mucosa. The association
between high-risk subtypes and cervical cancer, oropharyn-
geal squamous cell carcinoma (OPSCC) as well as some rare

cases of anogenital cancers has been well demonstrated. It
has been demonstrated that more than 90% of HPV-positive
OPSCC are induced by high-risk HPV16.[1] It has also been
demonstrated that, in spite of the reduction in the overall
incidence of head and neck squamous cancers in the past
decade, the rate of HPV-positive OPSCC has increased
worldwide.[2] HPV is sexually transmitted, and it has been
indicated that the prevalence of uncontrolled sexual behav-
iors, especially oral sex, during the last decades is
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responsible for the increasing incidence of HPV-positive
OPSCC. HPV inactivates two tumor suppressor proteins,
P53 and retinoblastoma (RB), that leads to cell cycle arrest,
and as a consequence, the progression of the virus into the
cell cycle and genomic integration into the host cells become
possible.[3] It has been shown that two viral oncoproteins,
E6 and E7, are responsible for the observed transformation
in the epithelium cells through inactivation of p53 and Rb,
respectively. Inactivation of Rb, in turn, results in the over-
expression of p16, which is considered a biomarker,[4,5] and
the detection of serum antibodies against HPV, for example,
E6 antibodies, in the prediagnostic patients is of great pre-
dictive value for HPV positive OPSCC.[6,7]

Patients recognized with HPV-associated oropharyngeal
cancers (OPC) have been observed to result in a better
response to therapies, and the prognosis for HPV-associated
OPC is also better compared to the other OPC cases [8]. This
has led to the classification of OPC into HPV-positive and
HPV-negative cases. Based on viral load and oncogene
expression, the HPV-positive groups are further classified
into two subgroups: HPV-active and HPV-inactive [9]. Race
has also been speculated to affect the diversity of disease
stage and survival, for example, different behavior in preva-
lence, mortality rate, and HPV status has been observed
between European American (EA) and African American
(AA) cases.[10,11] Transformation of keratinocytes from epi-
thelia observed in HPV-infected patients is the result of dis-
torting cell cycle-regulatory pathways by interference of
viral oncoproteins causing OPC (as well as anogenital can-
cer) progression[12]; however, the exact procedure by which
the keratinocytes are transformed is still under study, and the
molecular mechanism underlying HPV-related OPSCC is
not clearly identified.[13]

Studies so far have been focused on gene expression pat-
tern differences between HPV-negative and HPV-positive
patients. Considering gene co-expression patterns can
improve previous results as it takes into account intergene
relationships, which can lead to finding modules of genes
taking part in biological processes responsible for malignant
progression of OPC, also demonstrating molecular mecha-
nisms underlying differences between OPC classes. In this
work, we focused on two groups: HPV-active, and HPV-
negative patients.

Our main goals are to find specific biomarkers for dis-
criminating different types of OPSCC (HPV active and neg-
ative) and to propose potential targeted therapies specific for
each group. Considering these two groups (HPV-active and
HPV-negative), our study will focus only on biological pro-
cesses underlying the “distinction” of the specified groups
(and therefore giving insight to targeted therapy of OPSCC
subtypes based on HPV activity); for example, EGFR or
PI3K/AKT pathways, which are known as two important
pathways (and therefore targets for therapies) in the patho-
genesis of head and neck cancers, are not highlighted in our

analysis because their behavior has not been observed to be
significantly different in these groups.[14,15] This study is
composed of two main analyses: gene co-expression net-
work analysis and consensus network analysis. Co-expres-
sion network analysis indicates genetic modules extracted by
comparing HPV-active and HPV-negative expression pro-
files. Gene Ontology enrichment analysis of these modules
demonstrates significant biological processes correlated with
HPV-activity status, suggesting potential different targeted
therapies for each disease subtype. Consensus analysis indi-
cates relationships between co-expression modules in differ-
ent classes. Targets of miRNAs with known dysregulation in
HPV-related OPSCC are also identified in the relative mod-
ules, and the possible contribution of identified miRNAs is
investigated in the pathogenesis of relative tumors.

2 | MATERIALS AND METHOD

2.1 | Dataset

Gene expression data of OPSCC patients, GSE55542,[10]

were obtained from Gene Expression Omnibus (GEO). The
dataset consists of overall 36 samples: 12 HPV-active cases
(of which only 1 case is AA, and the rest are EAs), 8 HPV-
inactive cases (of which 4 belong to AA and 4 belong to EA
races), and 16 HPV-negative case (consisting of 8 AA and
8 EA cases). The main study by Tomar et al.[10] includes
65 oral or oropharyngeal fresh frozen tissue samples (from
AA and EA patients treated in South Carolina between 2010
and 2012) from which microarray data are provided after
image analysis (using Agilent Technologies platform—
Feature Extractor Software version 10.7.3.1). The resulting
data are then background corrected and log2 transformed.
The dataset contains 38 oropharyngeal tumor samples as
described previously in this section, which is used in the cur-
rent study. As reported by the authors, mortar and pestle sys-
tems (CryoGrinder™, CryoCooler™, OPS diagnostics LLC)
and TRIzol® Reagent (Ambion®, by Life Technologies) are
used to extract total RNA and DNA from the samples.[10]

The goal of the main study was to study differential gene
expression patterns in HPV-related tumors in AA and EA
patients; the study showed 10% of AA tumors (out of total
65) and 39% of EA tumors were HPV active (HPV DNA-
positive and also E7 mRNA expressed). The study demon-
strated that HPV-inactive tumors represent a different
expression pattern from both HPV-active and HPV-negative
groups in oral and oropharyngeal tumors. The analysis in the
original study focuses on differential gene expression, and a
network-based approach has not been used to compare the
groups.

A subset of 12 HPV-active cases and 16 HPV-negative
cases (total 28) of all oropharyngeal tumors was selected for
the current study. The original dataset was normalized. In
the pairwise analysis and network reconstruction between
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these two groups, we normalized the subsample data again
using Variance Stabilizing Normalization library.[16] The
data were preprocessed to remove genes with missing values
and outlier samples using a hierarchical clustering approach.
No outlier was detected in the samples. For network recon-
struction, we limited our study to 5,000 probes having larger
values of coefficient of variation among all samples for each
study. In our study, we focus on OPC samples only, and our
goal is to convey a thorough analysis (based on both differ-
ential expression and network-based analysis) in order to
better understand the similarities and differences in the two
group. Network-based analysis indicates the important bio-
logical processes responsible for the differences between the
two groups and can explain the different pattern of survival
and response to treatments in the two group.

2.2 | Construction of gene co-expression network

Methods based on correlation,[17] information theory-based
techniques,[18–20] and Bayesian Network-based methods[21,22]

present approaches used to construct gene networks. A gene
co-expression network is a network in which genes are repre-
sented by nodes, and an edge between two genes represents
high correlation between the expression values of the corre-
sponding (two) genes. Pearson correlation is one possible
method for computing the gene–gene correlations in such a
network. In a correlation-based gene co-expression network,
the correlation values are usually compared to a prespecified
threshold, and only edges with high confidence (correlation
value above the threshold) are considered to be present in the
network. Choosing the threshold is itself one of the challenges
of network inference methods. The benefit of using correla-
tion to construct such networks benefit includes having low
computational cost. Here, we used the R package Weighted
Gene Co-expression Network Analysis (WGCNA) for infer-
ring gene networks. WGCNA uses a soft-thresholding power
(a power to which the similarity values are raised in order to
compute the similarity matrix), which is selected such that the
resulting generated network has a scale-free topology.[23]

2.3 | Clustering of co-expression network

The adjacency matrix generated by WGCNA is converted to
a generalized version of the topological overlap matrix[24] in
order to reduce the effect of noise. A matrix of dissimilarities
is then computed from the topological overlap matrix, which
is further used as input in the hierarchical clustering algo-
rithm, aiming to generate gene modules. As the generated
network is constructed from the samples belonging to two
different states (e.g., HPV-positive and HPV-negative), the
edges in the co-expression network are representative of cor-
relations responsible for differences in the two states.
Modules in such a network represent the groups of genes
with high collaboration, which are candidates for genes
belonging to biological processes underlying the

phenotypical differences across samples. Gene modules
finally undergo gene ontology enrichment using the DAVID
functional annotation tool.[25] Analyzing biological process
and function results from GO demonstrates the relevancy
and statistical validity of each module.

2.4 | Consensus analysis

Much literature focuses on studying co-expression modules.
While studying these modules demonstrates significant
biological processes active in certain conditions, the relation-
ship between these modules is of biological importance and
should be studied.

The goal of consensus analysis is to discover if intermo-
dule relationships (inter-module correlations) is preserved
among the two states (HPV-negative and HPV-active). For
that purpose, the adjacency matrices for the HPV-negative
and HPV-active sample are extracted separately. These adja-
cency matrices, which are in fact topological overlap matrices
or TOMs,[24] are further used in order to construct a consistent
adjacency matrix (consensus_TOM, in which each element is
the minimum of the corresponding elements in TOMHPV-nega-

tive and TOM2HPV-active). Note that the modules extracted here
are the ones constructed by the clustering of the consensus
network (the network represented by consensus_TOM) and
are therefore different from the modules extracted in the
“module detection and functional enrichment” section.

The gene expression profile of each module is finally
summarized and represented by an eigengene, and the eigen-
gene network in which the co-expression values between
every two eigengene represents module correlation informa-
tion (maintaining the sign of co-expression value) can be
used to investigate intermodule relationships.

Here, we constructed eigengene networks [26] for differ-
ent datasets mentioned in previous section. Eigengene net-
works are meta-networks representing the similarities
between gene modules. Modules that are shared between the
two datasets (e.g., networks shared between HPV-active and
HPV-inactive conditions) are called consensus modules.
Comparing consensus modules in the two conditions allows
one to survey if the relationship between two modules is
preserved under the two conditions or not. This analysis dis-
closes information about possible network rewiring. Consen-
sus analysis is conducted using the WGCNA package.

3 | RESULTS AND DISCUSSION

Our computational result consists of two sections; first, we
present the results regarding modules discovered in c-
expression networks, and then, the consensus analysis results
are presented. The third part of this section (i.e., modules
overview and association with HPV activity state) focuses
on biological analysis of the discovered modules and the rel-
evancy of the results.

IMAN ET AL. 3



3.1 | Module detection and functional enrichment

In this study, we used a subset of dataset GSE55542, includ-
ing 12 samples belonging to the HPV-active category
(GSM1338930-GSM1338941) and 16 samples from the
HPV-negative category (GSM1338950-GSM1338965). The
samples were normalized using the VSN method,[16] and
5,000 probes with highest coefficient of variation values
were used for network reconstruction. After clustering the
network using hierarchical tree clustering (hclust function of
WGCNA package), 19 modules were detected. The 19 mod-
ules were further merged into 13 modules by comparing the
distance between module eigengenes. Each module is repre-
sented (and named) by means of a color name. The genes
not assigned to any module in our analysis are grouped into
a single module called the “gray” module, which is not con-
sidered in any further analysis. The clustering dendogram is
provided in File S1; the module colors (before and after
merging) are represented along with the dendogram.

Gene details and module membership information are pre-
sented in File S2. Each module is identified with a color
name. The extent to which a gene belongs to each module is
reported in the mentioned file such that, for each gene, two
values is available per module: module membership (column
name: MM. < moduleColor>) and p-value reported for mod-
ule membership (column name: p.MM. < moduleColor>).

For each module, an eigengene [26] is computed using
the moduleEigengenes function of WGCNA package. The
module eigengene is a representative of the corresponding
module, and the eigengene network can be used in order to
study the relationship between co-expression network mod-
ules and also to study the relationship of modules to traits.
The value computed for each eigengene is correlated with
the expression level of genes in the relevant module (pre-
serving the sign), and the module–trait relationship can be
computed by applying a correlation function, for example,
Pearson correlation coefficient, with module eigengene vec-
tor and trait vector as input parameters (moduleTraitCor =
cor(MEs, datTraits, use = “p”), in which the module Trait-
Cor is a vector representing the correlation value of each trait
to each module, which is later visualized by means of a heat-
map; MEs is the matrix in which each row represents a sam-
ple and columns specify module eigengene list, datTraits is
the list of trait information (filled by 0 and 1 s representing
HPV-negative or HPV-active state of each sample), and
use = “p” is a parameter for selecting Pearson correlation
coefficient.

The heatmap plot shown in Figure 1 demonstrates the
module–trait correlation along with the p-value assigned to
each correlation value.

As an be observed from the heatmap plot, there are four
modules (brown, orange, green-yellow, pink) with an abso-
lute trait correlation above 0.75 and very low p-value; there
are also three modules (tan, magenta, purple) with an abso-
lute trait correlation between 0.7 and 0.3 and a p-value less

than .05. List of probes existing in each module can be
found in Supplementary file Sup2-geneInfo-NegVsActive.
csv. In the discussion, we focus our investigations on the
first four modules (brown, orange, green-yellow and pink),
which are more relevant to the HPV state of the disease in
terms of correlation coefficient value and also biological rel-
evancy. The modules are discussed in the order of their
absolute correlation value. Having more absolute correlation
value means that the corresponding module has more rele-
vancy to the trait.

The pink module consists of 534 genes, including
ZNF541, GRIN2C, CELF4, TCP11, LOC375196,
CDKN2C, LOC254559, SMC1B, STAG3, KLHL35,
C19orf57, SYCP2, FLJ45482, RANBP17, KIF25, SYCE2,
CHDH, TCAM1P, CBX5, DDX25, and TLX2, which are
significantly overexpressed in HPV-active samples, and their
overexpression in HPV-relevant OPSCC has also been
observed in other studies. MYB, MYCN, and other overex-
pressed genes in the pink module have been reported as
miRNA targets. GO enrichment analysis reveals that genes
in this module are related to biological processes such as cell
developmental process and cell fate commitment (relevant
genes such as CDSN, CYP26B1, IL20, KRT16, KRT17,
LCE1B, LCE1C, LCE2A, SPRR2G, SPRR4, and etc.).
Other genes such as SYCP2, TCAM1P, and STAG3 are
among other significantly overexpressed genes in the pink
module, which are shown to have an effect on the progres-
sion of disease in HPV-positive patients. BCL2, as an apo-
ptosis regulator, is another important gene within the pink
module.

The next module we focus on is the brown module, con-
taining 219 genes that are mostly upregulated in HPV-
negative samples. This module is associated with GO bio-
logical process terms such as epidermis development, skin
development, keratinization and keratinocyte differentiation,

FIGURE 1 Heatmap plot demonstrating relationship between modules and
trait information (HPV-negative, HPV-active); for each module, the
correlation value along with a p-value is reported. The correlation is
reported with regard to HPV-negative trait (i.e., positive correlation means
the genes included in the corresponding module are overexpressed in HPV-
negative samples in comparison to HPV-active, and negative values means
the regarding module genes are overexpressed in HPV-active samples)
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intermediate filament cytoskeleton organization, regulation
of tyrosine phosphorylation of STAT protein, and regulation
of JAK–STAT cascade. The brown module contains several
oncogenes (such as ABL2, RAB38, RAB3B, MAFA, and
THRB); miRNA target genes (such as F2RL1, AREG,
CAV1, CYP26B1, GJA1, IL31RA, SERPINB5, SPRR2G,
SNAI2, THRB); and other relevant genes such as KRT6A,
KRT6C, KRT9, PKP1, ALOX12B, and KRT1.

The green-yellow and orange modules, consisting of
219 and 34 genes, respectively, are the next two modules
highly related to HPV status. Orange-contains genes such as
NT5E, RBM44, AIG1, AMIGO2, MPP6, CD209, RNU2–2,
and PPP1R36, which are overexpressed in HPV-negative
samples. The genes within the orange module are mostly
known to have a role in metastasis and cell–cell adhesion.
Finally, the green-yellow module consists of 219 genes
(such as RAB42, RAB36, KCNB2, XKR4, KELCDKN2A),
which are overexpressed in HPV-active samples. Activation
of I-kappaB kinase/NF-kappaB signaling and activation of
NF-kB signaling are relevant biological processes significant
in the green-yellow module. A thorough discussion on these
modules is provided in the section ‘Modules overview and
association with HPV activity state’.

The result of GO functional enrichment analysis (for GO
term biological process) of pink and brown modules is repre-
sented in Tables 1 and 2, respectively. A summary of enrich-
ment analysis of all modules is available in File S3.

3.2 | Consensus analysis

As mentioned in the Methods section, the goal of consensus
analysis is to extract the same modules on two different

datasets (e.g., data regarding patients’ different HPV status)
and investigate the intermodule preservation in the two data-
sets. Note that consensus modules are extracted independent
of the modules extracted in the previous section, and having
the same name does not mean any correlation between the
two sets of modules.

Figure 2 demonstrates the result of consensus analysis
on HPV-negative and HPV-active samples.

Significant biological processes in the turquoise module
are related to immune system process, leukocyte activation,
lymphocyte activation, T cell activation and aggregation,
and positive regulation of immune system process. For the
pink module, the significant processes include xenobiotic
metabolic process, glutathione metabolic process, cellular
response to jasmonic acid stimulus, and oxidation–reduction
process. Studying interplay between these modules indicates
certain network rewiring in HPV-active phenotype in con-
trast to HPV-negative. Full enrichment analysis is provided
in File S4.

3.3 | Modules overview and association with HPV
activity state

In this section, we focus on comparing modules constructed
from a gene expression dataset of HPV-active and HPV-
negative samples. Patterns of co-expression, possibly
responsible for the different molecular mechanism

TABLE 1 GO functional enrichment of pink module

GO term p-value

Negative regulation of cell development 4/14E−06

Cell fate specification 2/34E−05

Embryo development 3/88E−05

Regulation of nervous system development 8/12E−05

Negative regulation of developmental process 1/77E−04

Peripheral nervous system development 2/68E−04

Cell differentiation 2/81E−04

Positive regulation of developmental process 3/73E−04

Regulation of neuron differentiation 4/01E−04

Regulation of neurogenesis 4/20E−04

Single-organism process 4/22E−04

Negative regulation of cell differentiation 6/78E−04

Synapse assembly 0/00106

Regulation of cell development 0/00110

Glial cell differentiation 0/00130

Drug metabolic process 0/00131

Developmental process 0/00148

Calcium-independent cell–cell adhesion via plasma membrane
cell-adhesion molecules

0/0019

Cell fate commitment 0/0020

TABLE 2 GO functional enrichment of the brown module

GO term p value

Epidermis development 5/44E−22

Skin development 2/32E−18

Keratinization 7/20E−18

Keratinocyte differentiation 1/85E−15

Epithelium development 2/31E−13

Cell differentiation 2/57E−06

Anatomical structure development 5/18E−7

Multicellular organism development 2/28E−05

Single-organism process 2/65E−05

Establishment of skin barrier 4/56E−05

Single-organism developmental process 5/84E−05

Chemical homeostasis 6/92E−05

Regulation of water loss via skin 7/10E−5

Intermediate filament cytoskeleton organization 1/15E−04

Regulation of tyrosine phosphorylation of STAT protein 1/40E−04

Actin filament-based movement 1/44E−04

Tyrosine phosphorylation of STAT protein 1/92E−04

Regulation of JAK–STAT cascade 3/31E−04

Regulation of STAT cascade 3/31E−04

Positive regulation of tyrosine phosphorylation of STAT protein 6/73E−04

Multicellular organismal process 7/71E−04

JAK–STAT cascade 8/25E−04

Positive regulation of tyrosine phosphorylation of Stat3 protein 9/20E−04

STAT cascade 9/95E−04

IMAN ET AL. 5



underlying the distinction of the phenotypes, can highlight
gene co-expression modules, which can further be investi-
gated in our module enrichment and functional analysis. Sig-
nificantly differentially expressed genes in each module are
provided in Files S5–S8. In order to find the important dif-
ferentially expressed genes in modules (reported in File S5–
S8), first, the top 1,000 significantly differentially expressed
probes among all 5,000 probes are extracted. Probes within
these 1,000 ones belonging to each module are considered
important, differentially expressed probes in each module. R
package, Limma,[27] was used to calculate log2 expression
fold change values.

The most significantly related to the trait module is the
pink module (Figure 1), with a correlation of −0.85 and a
p-value of 1e−8. This module consists of the gene SYCP2
(with high module membership of 0.8). Increased expression
level of SYCP2 in HPV-related OPSCC is reported in previ-
ous studies[28,29] and is also observed in our differential gene
expression analysis (logFC 6.35, adj.p-value 8.9e−7). It also

has been shown that early-stage HPV-positive oropharyngeal
carcinoma can be predicted by deregulation of SYCP2 [30].
Another gene in pink module is TCAM1P (testicular cell
adhesion molecule 1) with overexpression in HPV-active
samples (logFC 7.02 and adj.p-value of 6.54e−6), and
STAG3 (stromal antigen 3) with overexpression in HPV-
related samples (logFC 5.56, adj.p-val 2.04e−7) is also a
member of the pink module (both with module member-
ship > 0.65). All three genes are known as markers for both
cervical- and HPV-related head and neck cancers.[31] Top
upregulated genes in HPV-active phenotype include:
ZNF541, GRIN2C, CELF4, TCP11, LOC375196, CDKN2C,
LOC254559, SMC1B, STAG3, KLHL35, C19orf57, SYCP2,
FLJ45482, RANBP17, KIF25, SYCE2, CHDH, TCAM1P,
CBX5, DDX25, and TLX2. Overexpression of several of
these genes has been observed in different studies.[32,33]

GO functional enrichment analysis conducted on this
module demonstrates terms related mostly to the cell devel-
opmental process. The list of genes in the pink module

FIGURE 2 Ten consensus modules are detected in HPV-active and HPV-negative samples. The preservation plot depicts low preservation of intermodule
correlations in several cases (discussed in the text). The bar plot represents mean preservation of each module in two cohorts
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associated with cell fate commitment is provided in Table 3.
Within these genes, TLX3 is overexpressed in HPV-active
samples with a significant logFC of 6.14 (adj.p-value of 3e
−5). BCL2 is a regulator for apoptosis, [34] but it is not con-
sidered an oncogene itself; however, in the presence of a
proto-oncogene, they together may lead to uncontrolled cell
development. An overexpression of BCL2 with a logFC of
4.12 and adjusted p-value of .0003 is observed in HPV-
active samples (although this is not among the top 100 differ-
entially expressed genes in our analysis). The role of BCL2
overexpression in apoptotic resistance and tumorigenesis in
lymphoma, leukemia, and also solid tumors (ovarian, colo-
rectal, and also head and neck cancers) has been reported in
several previous studies.[35–39] Downregulation of miR-143
and miR-126 observed in HPV-positive OPSCC sam-
ples[13,40] may be possible causes for upregulation of BCL2
in HPV-active samples compared to HPV-negatives. BCL2
targeted therapy has been proposed to be effective for head
and neck squamous cell carcinoma.[41] Due to our observa-
tion, significant overexpression of BCL2 for HPV-active
samples (compared to HPV-negative ones) suggest that
HPV-active OPSCC is a better candidate for therapies target-
ing BCL2; therefore, drugs inhibiting BCL2 are expected to
be more effective in HPV-active OPSCC tumors compared
to HPV-negative OPSCC ones.

The MYB proto-oncogene is one of the oncogenes pre-
sent in the pink module with an overexpression of 4.5 logFC
(adjusted p-value .0004). MYCN, with an overexpression of
4.4 (adjusted p-value of .0008), belonging to pink the mod-
ule is the target of downregulated miRNA-126.[13] The role
of MYCN in the progression of the cell life cycle and induc-
tion of proliferation is known in different cancer types (neu-
roblastoma, breast cancer, lung cancer, Wilms’ tumor).[42]

Overexpression of RAB26, a member of the RAS oncogene

family and another member of the pink module, with logFC
of 3.52 and adjusted p-value of .00025 is observed. RAB9B,
which is not differentially expressed in HPV-active samples,
is also another member of the pink module.

Table 4 summarizes information regarding the pink mod-
ule's genes related to the regulation of cell proliferation/
development, which are targeted by miRNAs reported as dif-
ferentially expressed in HPV-active samples (compared to
HPV-negative). Information regarding miRNA target genes
was obtained from mirtarbase.[43]

Another module significantly related to state module is
the brown module in which most of the genes were upregu-
lated in HPV-negative samples. GO terms in detail consist
of: epidermis development, skin development, keratinization
and keratinocyte differentiation, epidermal cell differentia-
tion, epithelium development, anatomical structure develop-
ment, establishment of skin barrier, intermediate filament
cytoskeleton organization, regulation of tyrosine phosphory-
lation of STAT protein, actin filament-based movement,
actin-mediated cell contraction, tyrosine phosphorylation of
STAT protein, regulation of JAK–STAT cascade, regulation
of STAT cascade, and positive regulation of tyrosine phos-
phorylation of Stat3 protein.

Simultaneously prompting cell immortalization and
decreased expression of cytokeratin induced by HPV has
been postulated by several studies.[44] The list of genes from
the brown module belonging to the keratinocyte differentia-
tion GO biological process is provided in Table 5. Differen-
tially expressed genes with logFC > 2 and p-value < .01 are
specified with an asterisk sign. Other genes playing role in
intermediate filament cytoskeleton organization (such as
KRT6A, KRT6C, KRT9* (logFC −2.7 and adj p-value of
0.02), PKP1, ALOX12B, KRT1 * (logFC −3.7, 0.04)) and
other keratins like KRT75 * (logFC −3.5, 0.01) are also pre-
sent in the brown module. The brown module also contained
five oncogenes: ABL2, RAB38 (member of RAS oncogene
family), RAB3B (member of RAS oncogene family),
MAFA, and THRB (thyroid hormone receptor, beta). ABL2
(logFC 3.6), RAB38 (logFC 3.6), RAB3B (logFC −3.3),
and MAFA (logFC 2.9) are significantly differentially
expressed in HPV-negative samples. All adjusted p-values
are below 0.005. Overexpressed ABL2 (ABL proto-
oncogene 2), MAFA (MAF Bzip transcription factor A), and
RAB3B (member RAS oncogene family) play a role in the
positive regulation of cellular process.

Among genes in the brown module, CAV1 (caveolin
1, logFC 3.9), EPO (erythropoietin, locFC 3.4), FLRT3
(fibronectin leucine-rich transmembrane protein 3, logFC 4),
IFNE (interferon epsilon), IL18 (interleukin 18), IL20 (inter-
leukin 20, logFC 3.6), IL24 (interleukin 24, logFC 3.6),
IL31RA (interleukin 31 receptor A), and CLCF (cardiotro-
phin-like cytokine factor 1, logFC 2.7) belong to the GO cel-
lular process related to regulation of JAK–STAT cascade.
Most of these genes are downregulated significantly in

TABLE 3 List of genes belonging to the pink module that are associated
with cell fate commitment

Gene symbol Description

BCL2* Apoptosis regulator

DMRTA2* DMRT like family A2

DSCAML1* DS cell adhesion molecule like 1

EYA2 EYA transcriptional coactivator and phosphatase 2

ISL1 ISL LIM homeobox 1

POU4F1* POU class 4 homeobox 1

SOX2 SRY-box 2

SOX6 SRY-box 6

SOX8* SRY-box 8

TLX3* T-cell leukemia homeobox 3

FOXA1 Forkhead box A1

IL23A Interleukin 23 subunit alpha

MESP1* Mesoderm posterior bHLH transcription factor 1

PAX6* Paired box 6

PTCH1 Patched 1

*Genes differentially expressed with logFC > 2 and adjusted p-value < .01.
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HPV-active samples in contrast with HPV-negative ones.
The signaling cascade of JAK–STAT is activated (observed
in HPV-negative tissue) in response to different growth fac-
tor and cytokines [45]. The role of the JAK–STAT signaling
pathway is known in proliferation, apoptosis, and oncogene-
sis and can be activated by ABL oncogenes [46]. ABL2 over-
expression observed in HPV-negative samples is a potential
cause of observed JAK–STAT dysregulation. The activation
of JAK–STAT pathway has been observed in neoplastic tis-
sue, [47–49] and the positive effect of RAS and JAK–STAT
inhibitors in inducing apoptosis of cancer cells has been
observed [50–53]. According to our analysis, the JAK–STAT
pathway is significantly upregulated in HPV-negative sam-
ples relative to HPV-active ones. The role of the JAK–STAT
pathway in angiogenesis, carcinogenesis, and elevated cell
proliferation of head and neck cancer has been studied [54].
Our analysis confirms previous studies on HPV-associated
OPSCC and demonstrates the idea that HPV-active tumor
progression is conducted via a different mechanism (regu-
lated via genes in the pink module). Drugs targeting ABL2
can be proposed as possible inhibitors for the JAK–STAT

pathway, leading to apoptosis induction in HPV-negative
OPSCC tumors but, due to our analysis, cannot be beneficial
in case of HPV-active samples.

Some upregulated genes (selected from GO enrichment
result related to epithelial development) in the brown module
with downregulation of the miRNA-targeting gene (upregu-
lation and downregulation in HPV-negatives is of interest) is
listed in Table 6. Selected miRNAs are those significantly
differentially expressed in HPV-associated OPSCC.[13,40]

We suggest these genes (especially F2RL1, AREG, and
CAV1 as significantly overexpressed in HPV-negative sam-
ples) for further studies. These genes and their targeting
miRNAs are listed in Table 6. The two other modules signif-
icantly related to HPV positive–negative status are the
green-yellow and orange modules, consisting of 219 and
34 genes, respectively. In orange, we recognized no onco-
genes. Genes belonging to this module (all overexpressed in
HPV-negative samples) are mostly significant in leukocyte
cell–cell adhesion, which is also known to have a role in
metastasis[55] and act as a biomarker in breast cancer.[56,57]

NT5E and CD209 are significantly overexpressed cell–cell
adhesion-related genes within this module.

In the green-yellow module, in which all of genes are
overexpressed in HPV-active samples, two oncogenes RAB42
(overexpressed with logFC of 3.2, adjusted p-value of .013)
and RAB36 (logFC of 2.6 and adjusted p-value of .03) were
present. The green-yellow module suggests activation of I-
kappaB kinase/NF-kappaB signaling in the HPV-active cohort.
Activation of NF-kB signaling is known as a response to stim-
uli such as viral infection. Evidently, the pink and brown mod-
ule represent different pathogenic pathways active in the
samples, proposing that the distinction in phenotype and geno-
typical characteristics between HPV-active and HPV-negative
samples and identified genes introduces potential targeted ther-
apies inhibiting unwanted dysregulation in each cohort.

4 | CURRENT AND FUTURE
DEVELOPMENTS

In this study, the distinct molecular mechanism underlying
HPV-active and HPV-negative samples were investigated.
Extraction of gene co-expression network resulting from the
analysis demonstrated gene modules that have further under-
gone GO enrichment analysis. The result of enrichment anal-
ysis, besides the differential expression analysis and

TABLE 4 Cell proliferation/development-related genes in the pink module targeted by miRNAs known to be dysregulated in HPV-active samples

Gene HPV-actvlogFC Adj. p-val Module membership miRNA miRNA in HPV+

BCL2 4.12 .0003 0.78 miR-143 Downregulated

CACNB4 3.07 .0002 0.59 miR-26b Downregulated

AMOT 3.27 .02 0.64 miR-127-5p mirt/3p Downregulated

ABCA3 4.8 .0009 0.72 miR-409-5p Downregulated

ADAMTS17 3.18 .007 0.65 miR-432-5p / mir-432 Downregulated

TABLE 5 List of genes belonging to the pink module that are associated
with cell fate commitment

Gene
symbol Description

CDSN* ATP binding cassette subfamily A member 12 (ABCA12)
corneodesmosin

CYP26B1* Cytochrome P450 family 26 subfamily B member 1

IL20* Interleukin 20

KRT16* Keratin 16

KRT17* Keratin 17

LCE1B Late cornified envelope 1B

LCE1C Late cornified envelope 1C

LCE2A* Late cornified envelope 2A

LCE2B Late cornified envelope 2B

LCE2C* Late cornified envelope 2C

LCE2D* Late cornified envelope 2D

LCE3B* Late cornified envelope 3B

LCE3C* Late cornified envelope 3C

LCE3D* Late cornified envelope 3D

LCE3E* Late cornified envelope 3E

PRR9* Proline rich 9

SPRR2G* Small proline rich protein 2G

SPRR4* Small proline rich protein 4

*Genes differentially expressed with logFC > 2 and adjusted p-value < .01.
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investigation of miRNA target genes (for miRNAs showing
differential expression patterns in HPV-associated OPSCC),
provides a more thorough perspective of the biological pro-
cesses responsible for difference in phenotype and response
to therapy between HPV-negative and HPV-active malignant
tissue. This study focuses on the differences between the
two phenotypes (and not general characteristics of OPSCC).
Consensus analysis represents major intermodule rewiring in
the co-expression networks of the two subtypes. The strengths
of our analysis are network reconstruction and module extrac-
tion and, finally, analyzing each module separately. This
approach will keep our attention on genes with an important
role in different relevant biological process, whereas applying
merely differential expression analysis will ignore many of
these genes only because they will not appear on the top of
the differentially expressed gene list. Proposed directions for
future research include investigation of proposed targeted
therapies for each OPSCC subtype and a more detailed study
on the proposed gene sets responsible for relative biological
process. The study of mechanisms by which HPV affects the
proposed pathways is also a direction for future work.
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