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Abstract

Background: Foods with animal origins and particularly milk play a considerable role in transmission of Helicobacter
pylori. The current study was performed to assess phenotypic characters of antibiotic resistance and genotyping
pattern of vacA, cagA, iceA, oipA and babA2 alleles amongst the H. pylori strains isolated from raw milk.

Methods: Six-hundred and thirty raw milk samples were collected and cultured on Wilkins Chalgren anaerobe
media. Antibiotic resistance and genotyping patterns were studied using disk diffusion and PCR, respectively.

Results: Sixty-seven out of 630 (10.63%) raw milk samples were positive for H. pylori. Ovine raw milk (17.27%)
samples had the highest prevalence of H. pylori, while camel (5.00%) had the lowest. H. pylori strains harbored the
highest prevalence of resistance against ampicillin (82.08%), tetracycline (76.11%), amoxicillin (74.62%),
metronidazole (65.67%) and erythromycin (53.73%). Prevalence of resistance against more than 10 types of
antibiotics was 17.91%. VacA s1a (83.58%), m1a (80.59%), s2 (77.61%) and m2 (68.65%), cagA (73.13%) and babA2
(44.77%) were the most commonly detected genotypes. We found that S1am1a (56.71%), s2m1a (56.71%), s1 am2
(43.28%) and s2 m2 (43.28%) were the most commonly detected genotyping pattern. Frequency of cagA-, oipA- and
babA2- genotypes were 26.86%, 62.68% and 55.22%, respectively. We found that S1a/cagA+/iceA1/oipA−/babA2-
(28.35%), m1a/cagA+/iceA1/oipA−/babA2- (28.35%) and s2/cagA+/iceA1/oipA−/babA2- (26.86%) were the most
commonly detected combined genotyping pattern.

Conclusions: Simultaneous presence of vacA, cagA, iceA, oipA and babA2 genotypes in antibiotic resistant H. pylori
strains indicates important public health issue regarding the consumption of raw milk. However, additional
researches are required to find molecular genetic homology and other epidemiological aspects of H. pylori in milk.
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Background
Milk of animals provide a package of key nutrients that
are difficult to obtain in diets with limited or no dairy
products [1]. Dissimilarly, raw milk is not necessarily
safe, as evidenced by higher rates of foodborne illnesses
associated with its consumption [2–6]. Likewise, there
were so many investigations about the considerable
prevalence of some specific foodborne pathogens in raw
milk [2–6].
Helicobacter pylori (H. pylori) is a microaerophilic and

Gram-negative spiral coccoid flagellated bacterium with
2 to 4 μm in length and 0.5 to 1 μm in width. It is
known as one of the main causative agents of duodenal
ulcer, peptic ulcer disease, gastric adenocarcinoma, type
B gastritis and gastric B-cell lymphoma [7–9]. Human
stomach is considered as a main reservoir of H. pylori
strains [7–9]. In keeping with this, foods with animal
origins may play an imperative role in transmission of H.
pylori infections to human [7–9]. Suitable conditions
including pH, activated water (AW), moisture and
temperature cause H. pylori to easily survive in milk
[10]. Raw milk [10], pasteurized milk [7–9] and even
sterilized food samples [10] have been introduced as
possible emerging sources of H. pylori infections. Vacuo-
lating Cytotoxin A (vacA) and Cytotoxin Associated
Gene A (cagA) are two important virulence genes with
high importance in the pathogenicity of H. pylori infec-
tions [7–10]. The vacA gene is polymorphic, comprising
variable signal regions (type s1 or s2) and mid-regions
(type m1 or m2). The s1 type is additionally divided into
s1a, s1b and s1c and the m1 into m1a and m1b subtypes.
The cagA gene has been detected in the severe cases of
gastrointestinal disorders and peptic ulcers [7–10].
Induced by contact with the epithelium antigen (iceA),
outer inflammatory protein (oip) and blood group
antigen-binding adhesin gene (babA) are other import-
ant pathogenic genotypes of the H. pylori strains [7–11].
Genotyping using these virulence markers is considered
as one of the best approaches to study the correlations
between H. pylori isolates from different samples [11].
Antibiotic therapy is one of the best aspects of

treatments for H. pylori infections. However, therapeutic
options have become somewhat restricted because of the
presence of severe resistance in some strains of this bac-
terium [12]. Documented data disclosed that H. pylori
strains harbored the high prevalence of resistance
against different types of antibiotics [12].
Data on the epidemiology and transmission of H.

pylori is extremely significant in order to prevent its dis-
tribution and to identify high-risk populations, especially
in areas that have high rates of infections such as Iran
[7–10, 13, 14]. Considering the indistinct epidemio-
logical aspects of H. pylori in milk and due to the high
prevalence of H. pylori all-around the world [7–14], the

present investigation was performed in order to study
the prevalence rate, genotyping patterns and phenotypic
evaluation of antibiotic resistance of the H. pylori strains
isolated from raw milk samples of bovine, ovine, caprine,
buffalo and camel.

Methods
Samples
From January to March 2018, total 630 raw milk samples
of bovine (n = 120), ovine (n = 110), caprine (n = 130),
buffalo (n = 130) and camel (n = 140) were arbitrarily col-
lected from the supermarkets of diverse areas of Isfahan
province, Iran. All milk samples were collected from trad-
itional dairy farms. Milk samples were kept at refrigerator.
Throughout milk collection, the first few squirts were
overlooked. The animals which their milk samples
collected for this research were clinically healthy, and the
milk samples displayed natural physical (color, odor, pH,
and density) constancy. Samples (50 ml, in sterile glass
bottles) were transported in ice-cooled flasks (at 4 °C) to
the laboratory within two hours after collection.

Isolation of helicobacter pylori
Isolation of H. pylori bacteria was performed using the
culture technique [7–10, 13, 14]. Twenty-five milliliters
of milk sample were used for this purpose. Wilkins
Chalgren anaerobe broth (Oxoid Ltd., Basingstoke, UK)
was used for this purpose. Microaerophilic conditions
(5% oxygen, 85% nitrogen and 10% CO2) was prepared
using the MART system (MART system, Lichtenvoorde,
The Netherland).

DNA extraction and 16S rRNA-based PCR confirmation
Distinctive colonies of H. pylori were additionally ap-
proved using the 16S rRNA-based PCR method. Typical
colonies were sub-cultured on Wilkins Chalgren anaer-
obe broth supplemented with same materials mentioned
above [15]. Genomic DNA was then extracted from
colonies using a DNA extraction kit (Thermo Fisher
Scientific, St. Leon-Rot, Germany). Procedure was
performed rendering to the manufacturer’s guidelines.
Purity (A260/A280) and concentration of extracted
DNA were then checked (NanoDrop, Thermo Scien-
tific, Waltham, MA, USA). The truth of the DNA
was assessed on a 2% agarose gel stained with eth-
idium bromide (0.5 μg/mL) (Thermo Fisher Scientific,
St. Leon-Rot, Germany). Polymerase Chain Reaction
(PCR) was performed using a PCR thermal cycler
(Eppendorf Co., Hamburg, Germany) according to re-
ported procedure [15].

Study the antibiotic resistance pattern
There are no accepted standardized methods for testing
H. pylori antimicrobial susceptibilities and the protocols
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used in this study were based on recently published
guidelines [16] and also those of Performance Standards
for Antimicrobial Susceptibility Testing- Clinical and
Laboratory Standards Institute - NCCLS, 2007 [17].
Briefly, bacterial suspensions were adjusted to the 0.5
McFarland standard (equivalent to 1–2 × 108 cfu/ml)
and were used to inoculate Muller Hinton agar plates
(Merck, Germany). Antimicrobial disks (ampicillin
(10 μg), levofloxacin (5 μg), metronidazole (5 μg), clari-
thromycin (2 μg), amoxicillin (10 μg), streptomycin
(10 μg), cefsulodin (30 μg), erythromycin (5 μg), tetra-
cycline (30 μg), trimethoprim (25 μg), furazolidone
(1 μg), rifampin (30 μg), and spiramycin (100 μg) (Oxoid,
UK)) were applied and the plates were incubated under
microaerophilic conditions at 35 °C for 16–18 h. The
zones of growth inhibition produced by each antibiotic
were measured and interpreted by standard procedure.
Reference strains NCTC 13206 (CCUG 38770) and
NCTC 13207 (CCUG 38772) were included as quality
controls [18].

Genotyping analysis
Frequency of vacA, cagA, iceA, oipA and babA alleles
were assessed using PCR [19–22]. Table 1 characterizes
the set of primers and PCR circumstances applied for
genotyping of vacA, cagA, iceA, oipA and babA alleles.
Initially, all samples were subjected to pre-tests to found
suitable time, temperature and volume of reaction. A
programmable DNA thermo-cycler (Eppendorf Master-
cycler 5330, Eppendorf-Nethel-Hinz GmbH, Hamburg,
Germany) was used in all PCR reactions. PCR grade
water and H. pylori standard strains (SS1, 26,695, Tx30,
J99, 88–23 and 84–183) were used as negative and posi-
tive controls, respectively. Ten microliters of PCR prod-
uct were exposed to electrophoresis in a 2% agarose gel
in 1X TBE buffer at 80 V for 30 min, stained with SYBR
Green. The UVI doc gel documentation systems (Grade
GB004, Jencons PLC, London, UK) was applied for
analysis of images.

Statistical analysis
Data were subjected to Microsoft office Excel (version
15; Microsoft Corp., Redmond, WA, USA). Statistical
analysis was performed by means of the SPSS 21.0 statis-
tical software (SPSS Inc., Chicago, IL, USA). Chi-square
test and Fisher’s exact two-tailed test were applied to
measure any significant relationship. P value < 0.05 was
considered as statistical significant level.

Results
Table 2 represents the prevalence of H. pylori in differ-
ent types of raw milk samples. Sixty-seven out of 630
(10.63%) raw milk samples were positive for H. pylori
strains. All isolates were also approved by the 16SrRNA

gene PCR amplification. Ovine (17.27%) and caprine
(13.84%) raw milk samples had the highest prevalence of
H. pylori strains, while camel (5.00%) had the lowest.
Statistically significant difference was seen between type
of samples and prevalence of H. pylori strains (P < 0.05).
Table 3 represents the antibiotic resistance pattern of

H. pylori strains isolated from different types of raw milk
samples. H. pylori strains harbored the highest preva-
lence of resistance against ampicillin (82.08%), tetracyc-
line (76.11%), amoxicillin (74.62%), metronidazole
(65.67%) and erythromycin (53.73%) antibiotic agents.
Furthermore, H. pylori strains harbored the lowest
prevalence of resistance against cefsulodin (13.43%),
furazolidone (13.43%), spiramycin (16.41%) and strepto-
mycin (23.88%). Moreover, prevalence of resistance
against clarithromycin, levofloxacin, rifampin and tri-
methoprim antibiotic agents were 47.76%, 38.80%,
32.83% and 34.32%, respectively. Statistically significant
difference was seen between type of samples and preva-
lence of antibiotic resistance (P < 0.05). Figure 1 repre-
sents the distribution of multi-drug resistant H. pylori
strains isolated from different types of raw milk samples.
We found that all of the H. pylori strains isolated from
raw milk samples at least had resistance against 3 differ-
ent types of antibiotics, while prevalence of resistance
against more than 3 types of antibiotics (etc) was
94.02%.
Table 4 represents the distribution of genotypes

amongst the H. pylori strains isolated from different
types of raw milk samples. VacA s1a (83.58%), m1a
(80.59%), s2 (77.61%) and m2 (68.65%), cagA (73.13%)
and babA2 (44.77%) were the most commonly detected
genotypes amongst the H. pylori strains isolated from
different types of raw milk samples. VacA s1c (10.44%),
m1b (28.35%) and s1b (32.83%), iceA2 (19.40%) and oipA
(37.31%) had the lowest prevalence amongst the H. pyl-
ori strains isolated from different types of raw milk sam-
ples. Statistically significant difference was seen between
type of samples and prevalence of genotypes (P < 0.05).
Additionally, statistically significant difference was
seen between the prevalence of iceA1 and iceA2 geno-
types (P < 0.05).
Table 5 represents the genotyping pattern of H. pylori

strains isolated from different types of raw milk samples.
S1am1a (56.71%), s2m1a (56.71%), s1 am2 (43.28%) and
s2 m2 (43.28%) were the most commonly detected
genotyping pattern of the vacA alleles of H. pylori strains
isolated from different types of raw milk samples. Distri-
bution of cagA-, oipA- and babA2- genotypes were
26.86%, 62.68% and 55.22%, respectively. We found that
10.44% of H. pylori strains harbored iceA1/iceA2 geno-
typing pattern. S1cm1b (1.49%), s1 cm2 (4.47%), s1bm1b
(7.46%), s1cm1a (7.46%), s1bm2 (11.94%), s2m1b
(16.41%) and s1bm1a (16.41%) had the lowest prevalence
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amongst different genotyping patterns of H. pylori
strains.
Table 6 represents the combined genotyping pattern of

H. pylori strains isolated from different types of raw milk
samples. We found that s1a/cagA+/iceA1/oipA−/babA2-
(28.35%), m1a/cagA+/iceA1/oipA−/babA2- (28.35%), s2/
cagA+/iceA1/oipA−/babA2- (26.86%), s1a/cagA+/iceA1/
oipA−/babA2+ (25.37%), m1a/cagA+/iceA1/oipA−/babA2+
(25.37%), s2/cagA+/iceA1/oipA−/babA2+ (23.88%), s1a/
cagA+/iceA1/oipA+/babA2- (22.38%) and m2/cagA
+/iceA1/oipA−/babA2+ (22.38%) were the most commonly

detected combined genotyping pattern of H. pylori strains
isolated from different types of raw milk samples. There
were no detected H. pylori strains positive for s1b/cagA
−/iceA2/oipA+/babA2+, s1c/cagA+/iceA1/oipA+/babA2+,
s1c/cagA+/iceA1/oipA+/babA2-, s1c/cagA+/iceA2/oipA
+/babA2+, s1c/cagA+/iceA2/oipA+/babA2-, s1c/cagA
+/iceA2/oipA−/babA2+, s1c/cagA−/iceA1/oipA+/babA2+,
s1c/cagA−/iceA1/oipA+/babA2-, s1c/cagA−/iceA1/oipA
−/babA2+, s1c/cagA−/iceA2/oipA+/babA2+, s1c/cagA
−/iceA2/oipA+/babA2-, s1c/cagA−/iceA2/oipA−/babA2+,
s1c/cagA−/iceA2/oipA−/babA2-, m1b/cagA−/iceA1/oipA

Table 1 Set of primers and PCR circumstances applied for genotyping of vacA, cagA, iceA, oipA and babA alleles

Genes Primer Sequence (5′-3′) Size of product (bp) Volume of PCR reaction (50 μl) PCR programs

VacA s1a F: CTCTCGCTTTAGTAGGAGC
R: CTGCTTGAATGCGCCAAAC

213 5 μL PCR buffer 10 x 1.5 mM Mgcl2
200 μM dNTP (Thermo Fisher
Scientific, St. Leon-Rot, Germany)
0.5 μM of each primers F & R
1.25 U Taq DNA polymerase
(Thermo Fisher Scientific,
St. Leon-Rot, Germany)
2.5 μL DNA template

1 cycle:
95 °C ------------ 1 min.
32 cycle:
95 °C ------------ 45 s
64 °C ------------ 50 s
72 °C ------------ 70 s
1 cycle:
72 °C ------------ 5 min

VacA s1b F: AGCGCCATACCGCAAGAG
CTGCTTGAATGCGCCAAAC

187

VacA s1c F: CTCTCGCTTTAGTGGGGYT
R: CTGCTTGAATGCGCCAAAC

213

VacA s2 F: GCTAACACGCCAAATGATCC
R: CTGCTTGAATGCGCCAAAC

199

VacA m1a F: GGTCAAAATGCGGTCATGG
R: CCATTGGTACCTGTAGAAAC

290

VacA m1b F: GGCCCCAATGCAGTCATGGA
R: GCTGTTAGTGCCTAAAGAAGCAT

291

VacA m2 F: GGAGCCCCAGGAAACATTG
R: CATAACTAGCGCCTTGCA

352

Cag A F: GATAACAGCCAAGCTTTTGAGG
R: CTGCAAAAGATTGTTTGGCAGA

300 5 μL PCR buffer 10X
2 mM Mgcl2
150 μM dNTP (Thermo Fisher
Scientific, St. Leon-Rot, Germany)
0.75 μM of each primers F & R
1.5 U Taq DNA polymerase
(Thermo Fisher Scientific,
St. Leon-Rot, Germany)
3 μL DNA template

1 cycle:
94 °C ------------ 1 min.
32 cycle:
95 °C ------------ 60 s
56 °C ------------ 60 s
72 °C ------------ 60 s
1 cycle:
72 °C ------------ 10 min

IceA IceA1 F: GTGTTTTTAACCAAAGTATC
R: CTATAGCCASTYTCTTTGCA

247 5 μL PCR buffer 10 x 2 mM Mgcl2
150 μM dNTP (Thermo Fisher
Scientific, St. Leon-Rot, Germany)
0.75 μM of each primers F & R
1.5 U Taq DNA polymerase
(Thermo Fisher Scientific,
St. Leon-Rot, Germany)
3 μL DNA template

1 cycle:
94 °C ------------ 1 min.
32 cycle:
94 °C ------------ 60 s
56 °C ------------ 60 s
72 °C ------------ 60 s
1 cycle:
72 °C ------------ 10 min

IceA2 F: GTTGGGTATATCACAATTTAT
R: TTRCCCTATTTTCTAGTAGGT

229/334

OipA F: GTTTTTGATGCATGGGATTT
R: GTGCATCTCTTATGGCTTT

401 5 μL PCR buffer 10 x 2 mM Mgcl2
150 μM dNTP (Thermo Fisher
Scientific, St. Leon-Rot, Germany)
0.75 μM of each primers F & R
1.5 U Taq DNA polymerase
(Thermo Fisher Scientific,
St. Leon-Rot, Germany)
3 μL DNA template

1 cycle:
94 °C ------------ 1 min.
32 cycle:
94 °C ------------ 60 s
56 °C ------------ 60 s
72 °C ------------ 60 s
1 cycle:
72 °C ------------ 10 min

BabA F: CCAAACGAAACAAAAAGCGT
R: GCTTGTGTAAAAGCCGTCGT

105–124 5 μL PCR buffer 10 x 2 mM Mgcl2
150 μM dNTP (Thermo Fisher
Scientific, St. Leon-Rot, Germany)
0.75 μM of each primers F & R
1.5 U Taq DNA polymerase
(Thermo Fisher Scientific,
St. Leon-Rot, Germany)
3 μL DNA template

1 cycle:
94 °C ------------ 1 min.
35 cycle:
94 °C ------------ 60 s
57 °C ------------ 45 s
72 °C ------------ 30 s
1 cycle:
72 °C ------------ 10 min
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+/babA2+ and s1b/cagA−/iceA2/oipA+/babA2+ combined
genotyping patterns. Prevalence of s1b/cagA−/iceA1/oipA
+/babA2+, s1b/cagA−/iceA1/oipA+/babA2-, s1b/cagA
−/iceA2/oipA+/babA2-, s1c/cagA+/iceA1/oipA−/babA2+,
s1c/cagA+/iceA2/oipA−/babA2-, s1c/cagA−/iceA1/oipA
−/babA2-, s2/cagA−/iceA2/oipA+/babA2+, m1b/cagA
−/iceA1/oipA+/babA2-, m1b/cagA−/iceA1/oipA−/babA2+,
m1b/cagA−/iceA2/oipA+/babA2- and m2/cagA−/iceA2/
oipA+/babA2+ (1.49%) were lower than other detected
combined genotyping patterns.

Discussion
H. pylori is a common bacterium with high microbio-
logical and clinical importance and about 50% of the
world’s population, depending to the geographic location
considered, has been estimated to have been infected
with this organism. Despite the high incidence of the
infection, the reservoir for H. pylori and the routes of
infection are still indeterminate and various routes of
transmission have been recommended [23]. Moreover,
epidemiological investigations suggest that transmission
of H. pylori between individuals happens both via the
oral–oral and fecal–oral routes [23]. In keeping with
this, fecal–oral transmission has more significant impli-
cations than since H. pylori may occur in food and water
supplies subsequent to fecal contamination [24]. Besides,
the isolation of H. pylori in drinking water [13, 14], raw
vegetables [7, 9], salads [7, 9], meat [25, 26], ready to eat
foods [27, 28], sterilized foods [29, 30] and foods with
animal origin such as milk [31–35], suggests that these
foods may act as vehicles for transmission of H. pylori to
human population.
The present study was performed to assess the preva-

lence rate, genotyping patterns and antibiotic resistance
properties of H. pylori strains isolated from different
types of raw milk samples. Totally, 10.63% of raw milk
samples were positive for H. pylori strains. Prevalence of
H. pylori strains in raw milk samples of bovine, ovine,
caprine, buffalo and camel were 7.50, 17.27, 13.84, 10.76
and 5.00%, respectively. Several studies have been con-
ducted in this field. Talaei et al. (2015) [36] reported that
the total prevalence of H. pylori strains amongst the

cow, sheep, goat and buffalo milk samples were 16.00,
13.79, 4.76, 13.33 and 20.00%, respectively. Quaglia et al.
(2008) [35] determined that the prevalence of H. pylori
strains in sheep, cow and goat milk samples were
33.00%, 50.00% and 25.60%, respectively. Mousavi et al.
(2014) [10] described that the prevalence of H. pylori
strains in bovine, ovine, caprine, buffalo and camel milk
samples were 16.66, 35.00, 28.00, 15.00 and 13.30%,
respectively. Rahimi and Kheirabadi (2012) [37] noted
that the prevalence of H. pylori strains in raw bovine,
ovine, caprine, buffalo and camel milk samples were
1.41, 12.20, 8.70, 23.40 and 3.60%, respectively. Osman
et al. (2015) [38] revealed that the prevalence of H. pyl-
ori in raw milk samples of different parts of Sudan had a
range of 7 to 38%. Similar results have been reported for
the high prevalence of H. pylori in milk samples from
Japan (72.20%) [32], Greece (20.00%) [34], Italy 1.80%)
[39] and Iran (16.00%) [40].
Foods presenting intrinsic factors, including water ac-

tivity higher than 0.97 and pH ranging from 4.9 to 6.0
such as raw milk, theoretically could provide conditions
for survival of H. pylori [7–9]. Therefore, it is not sur-
prising that the H. pylori strains has the high prevalence
in raw milk samples of our investigation. High preva-
lence rate of H. pylori in milk samples of our research is
may be due to the low levels of hygienic conditions of
milking procedure. Furthermore, considering the boost
prevalence of H. pylori in healthy human carrier,
contamination due to poor hygiene management of open
package of milk, has more important implications for
the transmission of the infection through foods. Milk,
that could become contaminated during production or
because of low hygiene after the open of package, is con-
sidered to be one of the most likely vehicles for infection
[31, 32]. Insufficient post-processing hygienic manage-
ment of the milk, can carry the contamination of the
matrix by humans. Despite of the low prevalence of H.
pylori strains in some kinds of studied milk samples, the
infectious dose of H. pylori is presumably low [31, 32].
Therefore, it is an important public health threat regard-
ing the consumption of raw milk. The urea-dependent
acid resistance of H. pylori may account for the
long-term survival of H. pylori in an acidic environment
including raw milk [29]. Higher prevalence of H. pylori
in raw ovine milk samples is may be due to the more
suitable conditions present in ovine milk such as higher
fat, protein and water activity and also optimum pH.
Furthermore, ovine milk may have a higher qualification
for growth and survival of H. pylori strains. Moreover,
differences in the feed of ovine with bovine, buffalo,
camel and even caprine species may affect the preva-
lence rate of bacteria presented in their milk. Higher
prevalence of H. pylori in raw ovine milk was also re-
ported by previous investigations [10, 31, 32, 34–43].

Table 2 Prevalence of H. pylori in different types of raw milk
samples

Raw milk
samples

No samples
collected

N (%) of H. pylori
positive samples

H. pylori 16SrRNA PCR
confirmation (%)

Bovine 120 9 (7.50) 9 (7.50)

Ovine 110 19 (17.27) 19 (17.27)

Caprine 130 18 (13.84) 18 (13.84)

Buffalo 130 14 (10.76) 14 (10.76)

Camel 140 7 (5.00) 7 (5.00)

Total 630 67 (10.63) 67 (10.63)
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Using thorns and thistles in deserts and living away from
humans and the polluted environment of cities are the
most important probable reasons for the lower preva-
lence of H. pylori in camel milk. Lower prevalence of H.
pylori in raw camel milk was also reported by previous
investigations [10, 37, 44, 45].
We described that H. pylori bacteria exhibited the

maximum prevalence of resistance against ampicillin,
tetracycline, amoxicillin, metronidazole and erythro-
mycin antibiotics. Boost prevalence of resistance against
human-based antibiotics such as metronidazole, erythro-
mycin, clarithromycin, levofloxacin, amoxicillin, strepto-
mycin, rifampin, cefsulodin, trimethoprim, furazolidone
and spiramycin in H. pylori bacteria isolated from raw
milk samples characterized their anthropogenic origin.
Reversely, boost prevalence of resistance against
animal-based antibiotics such as ampicillin and tetracyc-
line in H. pylori bacteria isolated from raw milk samples
characterized their animal origin. As it displayed, major-
ity of H. pylori bacteria exhibited resistance against
human-based antibiotics. Extreme, illegal and prohibited
prescription of antibiotics in medicine and also veterin-
ary caused momentous surge in antibiotic resistance.
Frequent researches have been accomplished, globally.
Among plentiful examines performed on the antibiotic
resistance of H. pylori bacteria, discoveries of Hemmati-
nezhad et al. (2016) [46] (amoxicillin (94.59%), ampicillin
(93.24%), metronidazole (89.18%), tetracycline (72.97%)
and erythromycin (58.10%)), Yahaghi et al. (2014) [9]
(metronidazole (77.96%), amoxicillin (67.79%), ampicillin
(61.01%), and erythromycin (23.72%)) and Mousavi et al.
(2014) [10] (ampicillin (84.4%), tetracycline (76.6%),
erythromycin (70.5%), metronidazole (70%), and
clarithromycin (17.70%)) were similar to our findings.
Clinical investigations conducted in Iran, China, India,
Nigeria, Taiwan, Senegal, Thailand, Saudi Arabia, Brazil,
Egypt, Argentina and Colombia disclosed that H. pylori

bacteria of human clinical specimens displayed boost
prevalence of resistance against aminoglycosides, tetra-
cyclines, penicillins, macrolides and metronidazole [47]
which was parallel to our results.
We also found that vacA s1a, s2, m1a and m2, cagA,

iceA1, oipA and babA2 genotypes, s1am1a, s2m1a,
s1 am2, s2 m2, cagA-, oipA- and babA2- patterns and
s1a/cagA+/iceA1/oipA−/babA2-, m1a/cagA+/iceA1/
oipA−/babA2-, s2/cagA+/iceA1/oipA−/babA2-, s1a/
cagA+/iceA1/oipA−/babA2+, m1a/cagA+/iceA1/oipA
−/babA2+, s2/cagA+/iceA1/oipA−/babA2+, s1a/cagA
+/iceA1/oipA+/babA2- and m2/cagA+/iceA1/oipA
−/babA2+ combined genotyping patterns were the most
commonly detected virulence characters of H. pylori
strains isolated from raw milk samples. High prevalence
of vacA, cagA, iceA1, oipA and babA2 genotypes was
also reported in the H. pylori strains isolated from
clinical samples of human and animal species [48–51].
Furthermore, high prevalence of these genotypes has
been reported in the H. pylori strains isolated from dif-
ferent types of food samples [8–10, 14, 36, 42–45, 52].
Adjacent association of vacA, cagA, iceA, oipA and
babA2 genotypes of H. pylori bacteria with secretion of
interleukin-8 and cytotoxin, adhesion to gastric epithelial
cells, occurrence of inflammatory effect, vacuolization,
apoptosis procedure in gastric epithelial cells, peptic
ulceration, increase acute neutrophilic infiltration,
interleukin-10 secretion and inflammation, has been
presented previously [48–50]. Since H. pylori isolates in
our investigation harbored vacA, cagA, iceA, oipA and
babA2 genotypes, therefore consumption of raw milk
contaminated with virulent strains of H. pylori may ag-
gravate duodenal ulceration, gastric mucosal atrophy
and gastric cancer. Additionally, some of H. pylori
isolates were simultaneously positive for more than one
detected genotypes which poses their higher pathogen-
icity. Similar genotyping patterns of H. pylori strains

Fig. 1 Distribution of multidrug resistant H. pylori strains isolated from different types of raw milk. Multidrug resistant H. pylori strains were
determined as those who had at least simultaneous resistance against 3 or more than 3 types of antibiotics
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Table 6 Combined genotyping pattern of H. pylori strains
isolated from different types of raw milk samples

Combined genotyping patterns Distributiona (%)

s1a/cagA+/iceA1/oipA+/babA2+ 13 (19.40)

s1a/cagA+/iceA1/oipA+/babA2- 15 (22.38)

s1a/cagA+/iceA1/oipA−/babA2+ 17 (25.37)

s1a/cagA+/iceA1/oipA−/babA2- 19 (28.35)

s1a/cagA+/iceA2/oipA+/babA2+ 4 (5.97)

s1a/cagA+/iceA2/oipA+/babA2- 5 (7.46)

s1a/cagA+/iceA2/oipA−/babA2+ 6 (8.95)

s1a/cagA+/iceA2/oipA−/babA2- 7 (10.44)

s1a/cagA−/iceA1/oipA+/babA2+ 6 (8.95)

s1a/cagA−/iceA1/oipA+/babA2- 8 (11.94)

s1a/cagA−/iceA1/oipA−/babA2+ 8 (11.94)

s1a/cagA−/iceA1/oipA−/babA2- 10 (14.92)

s1a/cagA−/iceA2/oipA+/babA2+ 2 (2.98)

s1a/cagA−/iceA2/oipA+/babA2- 4 (5.97)

s1a/cagA−/iceA2/oipA−/babA2+ 5 (7.46)

s1a/cagA−/iceA2/oipA−/babA2- 5 (7.46)

s1b/cagA+/iceA1/oipA+/babA2+ 9 (13.43)

s1b/cagA+/iceA1/oipA+/babA2- 11 (16.41)

s1b/cagA+/iceA1/oipA−/babA2+ 12 (17.91)

s1b/cagA+/iceA1/oipA−/babA2- 14 (20.89)

s1b/cagA+/iceA2/oipA+/babA2+ 2 (2.98)

s1b/cagA+/iceA2/oipA+/babA2- 3 (4.47)

s1b/cagA+/iceA2/oipA−/babA2+ 4 (5.97)

s1b/cagA+/iceA2/oipA−/babA2- 5 (7.46)

s1b/cagA−/iceA1/oipA+/babA2+ 1 (1.49)

s1b/cagA−/iceA1/oipA+/babA2- 1 (1.49)

s1b/cagA−/iceA1/oipA−/babA2+ 2 (2.98)

s1b/cagA−/iceA1/oipA−/babA2- 2 (2.98)

s1b/cagA−/iceA2/oipA+/babA2+ –

s1b/cagA−/iceA2/oipA+/babA2- 1 (1.49)

s1b/cagA−/iceA2/oipA−/babA2+ 2 (2.98)

s1b/cagA−/iceA2/oipA−/babA2- 2 (2.98)

s1c/cagA+/iceA1/oipA+/babA2+ –

s1c/cagA+/iceA1/oipA+/babA2- –

s1c/cagA+/iceA1/oipA−/babA2+ 1 (1.49)

s1c/cagA+/iceA1/oipA−/babA2- 2 (2.98)

s1c/cagA+/iceA2/oipA+/babA2+ –

s1c/cagA+/iceA2/oipA+/babA2- –

s1c/cagA+/iceA2/oipA−/babA2+ –

s1c/cagA+/iceA2/oipA−/babA2- 1 (1.49)

s1c/cagA−/iceA1/oipA+/babA2+ –

s1c/cagA−/iceA1/oipA+/babA2- –

s1c/cagA−/iceA1/oipA−/babA2+ –

Table 6 Combined genotyping pattern of H. pylori strains
isolated from different types of raw milk samples (Continued)

Combined genotyping patterns Distributiona (%)

s1c/cagA−/iceA1/oipA−/babA2- 1 (1.49)

s1c/cagA−/iceA2/oipA+/babA2+ –

s1c/cagA−/iceA2/oipA+/babA2- –

s1c/cagA−/iceA2/oipA−/babA2+ –

s1c/cagA−/iceA2/oipA−/babA2- –

s2/cagA+/iceA1/oipA+/babA2+ 12 (17.91)

s2/cagA+/iceA1/oipA+/babA2- 13 (19.40)

s2/cagA+/iceA1/oipA−/babA2+ 16 (23.88)

s2/cagA+/iceA1/oipA−/babA2- 18 (26.86)

s2/cagA+/iceA2/oipA+/babA2+ 3 (4.47)

s2/cagA+/iceA2/oipA+/babA2- 4 (5.97)

s2/cagA+/iceA2/oipA−/babA2+ 6 (8.95)

s2/cagA+/iceA2/oipA−/babA2- 6 (8.95)

s2/cagA−/iceA1/oipA+/babA2+ 5 (7.46)

s2/cagA−/iceA1/oipA+/babA2- 7 (10.44)

s2/cagA−/iceA1/oipA−/babA2+ 9 (13.43)

s2/cagA−/iceA1/oipA−/babA2- 10 (14.92)

s2/cagA−/iceA2/oipA+/babA2+ 1 (1.49)

s2/cagA−/iceA2/oipA+/babA2- 3 (4.47)

s2/cagA−/iceA2/oipA−/babA2+ 4 (5.97)

s2/cagA−/iceA2/oipA−/babA2- 5 (7.46)

m1a/cagA+/iceA1/oipA+/babA2+ 12 (17.91)

m1a/cagA+/iceA1/oipA+/babA2- 14 (20.89)

m1a/cagA+/iceA1/oipA−/babA2+ 17 (25.37)

m1a/cagA+/iceA1/oipA−/babA2- 19 (28.35)

m1a/cagA+/iceA2/oipA+/babA2+ 4 (5.97)

m1a/cagA+/iceA2/oipA+/babA2- 5 (7.46)

m1a/cagA+/iceA2/oipA−/babA2+ 6 (8.95)

m1a/cagA+/iceA2/oipA−/babA2- 6 (8.95)

m1a/cagA−/iceA1/oipA+/babA2+ 6 (8.95)

m1a/cagA−/iceA1/oipA+/babA2- 7 (10.44)

m1a/cagA−/iceA1/oipA−/babA2+ 8 (11.94)

m1a/cagA−/iceA1/oipA−/babA2- 10 (14.92)

m1a/cagA−/iceA2/oipA+/babA2+ 2 (2.98)

m1a/cagA−/iceA2/oipA+/babA2- 3 (4.47)

m1a/cagA−/iceA2/oipA−/babA2+ 5 (7.46)

m1a/cagA−/iceA2/oipA−/babA2- 5 (7.46)

m1b/cagA+/iceA1/oipA+/babA2+ 8 (11.94)

m1b/cagA+/iceA1/oipA+/babA2- 10 (14.92)

m1b/cagA+/iceA1/oipA−/babA2+ 10 (14.92)

m1b/cagA+/iceA1/oipA−/babA2- 13 (19.40)

m1b/cagA+/iceA2/oipA+/babA2+ 2 (2.98)

m1b/cagA+/iceA2/oipA+/babA2- 3 (4.47)
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recovered from human clinical samples were also
reported previously [53–56].
A possible relationship between virulence factors and

antimicrobial resistance has been suggested. A study
conducted in 2009 in Ireland reported that the absence
of cagA may be a risk factor for developing metronida-
zole resistance [57]. Other studies have found an associ-
ation between clarithromycin resistance mutations and
the less virulent vacA genotypes [58]. Another report re-
vealed that cagE and vacA S1 correlated with clarithro-
mycin and metronidazole resistance [59], while others
found that neither cagA nor vacA was associated with
resistance [60, 61]. Therefore, it is important to found
any significant relationship between the presence of
virulence markers and antibiotic resistance amongst the
H. pylori strains.
Triple therapy, including two antibiotics, amoxicillin

and clarithromycin, and a proton pump inhibitor given
for a week has been recommended as the treatment of

choice at several consensus conferences [62]. However,
this treatment may fail for several reasons, as reported
elsewhere [63]. In fact, the main reason for failure was
found to be H pylori resistance to one of the antibiotics
used (that is, clarithromycin). Other treatments have
also been proposed, including metronidazole, a drug for
which resistance is also a problem although to a lesser
extent, as well as tetracycline, fluoroquinolones, and rifa-
mycins for which resistance has become an emerging
issue [64]. Results of the present investigation showed
that application of furazolidone, streptomycin and cefsu-
lodin may be effective for treatment of the cases of H.
pylori infections. Reduction in the antibiotic prescription
and also prescription of antibiotics according to the
results of the disk diffusion can reduce the risk of anti-
biotic resistance. Using medicinal plants and especially
those with high antimicrobial effects is a practical alter-
native way for treatment of H. pylori infection.

Conclusions
To put it in a nutshell, we recognized a great numbers
of virulent and resistant H. pylori bacteria in raw milk
samples of bovine, ovine, caprine, buffalo and camel spe-
cies. Boost incidence of H. pylori bacteria in raw milk
characterizes that these samples may be the natural
reservoirs of the bacteria and can spread H. pylori to
human. Moreover, some of the H. pylori bacteria of our
research harbored vacA, cagA, iceA, oipA and babA2
genotypes together which represents the high pathogen-
icity. Furthermore, higher prevalence of iceA1+ strains
than iceA2+, oipA- than oipA+ and finally babA2- than
babA2+ is another important finding of our study.
Additionally, presence of 97 diverse combined genotyp-
ing patterns with high distribution of s1a/cagA+/iceA1/
oipA−/babA2-, m1a/cagA+/iceA1/oipA−/babA2-, s2/
cagA+/iceA1/oipA−/babA2-, s1a/cagA+/iceA1/oipA
−/babA2+, m1a/cagA+/iceA1/oipA−/babA2+, s2/cagA
+/iceA1/oipA−/babA2+, s1a/cagA+/iceA1/oipA+/babA2-
and m2/cagA+/iceA1/oipA−/babA2+ is another inter-
esting finding of our research. Similarities in the
genotyping pattern of H. pylori strains between vari-
ous milk sources represent their same route of infec-
tion. High prevalence of multi-drug resistant H. pylori
strains shows that raw milk of bovine, ovine, caprine,
buffalo and camel species may be reservoir of anti-
biotic resistant H. pylori. Prescription of cefsulodin,
furazolidone, spiramycin and streptomycin may be
effectual for treatment of cases of H. pylori infections
due to the consumption of raw milk. Additional
researches are essential to recognize the rates of the
molecular genetic homology of H. pylori bacteria
isolated from milk and dairy samples and those of
human clinical specimens to confirm the zoonotic
aspects of H. pylori.

Table 6 Combined genotyping pattern of H. pylori strains
isolated from different types of raw milk samples (Continued)

Combined genotyping patterns Distributiona (%)

m1b/cagA+/iceA2/oipA−/babA2+ 4 (5.97)

m1b/cagA+/iceA2/oipA−/babA2- 4 (5.97)

m1b/cagA−/iceA1/oipA+/babA2+ –

m1b/cagA−/iceA1/oipA+/babA2- 1 (1.49)

m1b/cagA−/iceA1/oipA−/babA2+ 1 (1.49)

m1b/cagA−/iceA1/oipA−/babA2- 2 (2.98)

s1b/cagA−/iceA2/oipA+/babA2+ –

m1b/cagA−/iceA2/oipA+/babA2- 1 (1.49)

m1b/cagA−/iceA2/oipA−/babA2+ 2 (2.98)

m1b/cagA−/iceA2/oipA−/babA2- 2 (2.98)

m2/cagA+/iceA1/oipA+/babA2+ 11 (16.41)

m2/cagA+/iceA1/oipA+/babA2- 13 (19.40)

m2/cagA+/iceA1/oipA−/babA2+ 15 (22.38)

m2/cagA+/iceA1/oipA−/babA2- 18 (26.86)

m2/cagA+/iceA2/oipA+/babA2+ 2 (2.98)

m2/cagA+/iceA2/oipA+/babA2- 4 (5.97)

m2/cagA+/iceA2/oipA−/babA2+ 5 (7.46)

m2/cagA+/iceA2/oipA−/babA2- 6 (8.95)

m2/cagA−/iceA1/oipA+/babA2+ 3 (4.47)

m2/cagA−/iceA1/oipA+/babA2- 6 (8.95)

m2/cagA−/iceA1/oipA−/babA2+ 8 (11.94)

m2/cagA−/iceA1/oipA−/babA2- 10 (14.92)

m2/cagA−/iceA2/oipA+/babA2+ 1 (1.49)

m2/cagA−/iceA2/oipA+/babA2- 3 (4.47)

m2/cagA−/iceA2/oipA−/babA2+ 3 (4.47)

m2/cagA−/iceA2/oipA−/babA2- 5 (7.46)
aDistribution was achieved based on the total numbers of 67 H. pylori isolates
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