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Review Article

Mechanisms of diazinon effects
on impaired spermatogenesis
and male infertility

Asghar Beigi Harchegani1, Alireza Rahmani1,
Eisa Tahmasbpour4 , Hamid Bakhiari Kabootaraki2,
Hossein Rostami3 and Alireza Shahriary1

Abstract
Diazinon (DZN) is an organophosphate insecticide that has cytotoxic and pathological effects on the repro-
ductive system. It causes a wide variety of pathological effects on the reproductive system such as testicular
atrophy, disturbance in sex hormones, impaired spermatogenesis, low quality of sperm, and fertility problems.
However, molecular and cellular mechanisms of its adverse effects are not well understood. General events
such as testicular damage, inflammation, mitochondrial deficiency, DNA fragmentation, disintegration of sperm
plasma membrane, apoptosis, and cell death are observed in DZN-exposed animals. Oxidative stress (OS)
induced by reactive oxygen species may be a main mechanism, which can be associated with sperm DNA
fragmentation, reduced integrity of sperm cell membrane, apoptosis, depletion of antioxidants, and subse-
quently poor sperm quality and male infertility. Therefore, identification of these pathways may provide
valuable information regarding the mechanisms of DZN action on the male reproductive system. In this review,
we aim to discuss the proposed cellular and molecular mechanisms of DZN action on male reproductive
system, the importance of OS and mechanisms by which DZN induces OS and depletion of other antioxidants.
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Introduction

Environmental contamination with pesticides, espe-

cially organophosphate (OPs) insecticides, is a major

health problem throughout the world. OPs constitute

70% of the insecticides used in the United States

(Oostingh et al., 2009). Diazinon (DZN) is one of the

OPs insecticides that is widely used in agriculture for

crop protection and pest control (Jorsaraei et al.,

2010). DZN exposure can be associated with severe

health problems in humans and other mammals. Upon

absorption from the gastrointestinal tract, DZN inhi-

bits the activity of acetyl cholinesterase, resulting in

an accumulation of acetyl choline, affecting neuro-

muscular transmission (Boussabbeh et al., 2016;

Kalender et al., 2005; Perry et al., 2011).

The toxicity of DZN has been widely studied in

animal models, but the human data are very limited.

Nevertheless, a growing number of studies have indi-

cated that intensive use of DZN can be also dangerous

for humans. Occupational exposure to higher
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concentrations of DZN in the spraying season may

lead to side effects in different organs (Lu et al.,

2006).

Although DZN affects mainly the nervous system,

it can lead to some complications in various organs

and systems (Table 1). General signs and symptoms

include headache, dizziness, weakness, blurred

vision, nausea and vomiting, as well as abdominal

cramps, diarrhea, pinpoint pupils, difficulty breath-

ing, coma, and possibly death (Toman et al., 2009).

Some studies reported hyperglycemic and hemostatic

disorders related to glucose metabolism in DZN-

exposed individuals. For example, in a more recent

study, Khaksar et al. (2017) have demonstrated

increased blood glucose levels and significant weight

loss after DZN exposure. The genotoxic potential of

DZN and its cytotoxic effect on human peripheral

lymphocytes was also reported (Muranli et al.,

2015). Tisch et al. (2002) showed the potential carci-

nogenicity of DZN to human nasal mucosal cells.

Toxicity effects of DZN on liver, kidney, and brain

were also previously reported in animal models (Ezzi

et al., 2016; Tsitsimpikou et al., 2013).

Recent experimental studies have indicated that the

reproductive system is a main target for DZN toxicity.

However, the effect of DZN on human male infertility

is still controversial. Some in vivo studies demon-

strated the pathological effects of DZN on reproduc-

tive function with decreased levels of libido and

androgenic hormone (Maxwell and Dutta, 2005).

A great number of experimental studies have also

revealed that DZN can lead to male reproductive toxi-

city through spermatogenesis deficiency, a decline in

androgen levels, abnormal sperm, and a direct cell

Table 1. Biomarkers of DZN action on different cell types.

Study model Results References

In vivo
Rat testis "MDA; #GSH; #vitamin C; #vitamin E; #�-carotene Oksay et al. (2013)
Rat testis "MDA; #GSH Rahimi Anbarkeh et al.

(2014)
Rat liver "MDA; "caspases-9; "caspases-3; "Bax/Bcl-2 ratio Lari et al. (2015)
Rat liver #CAT activity; #peroxiredoxin-6 activity; #3-ketoacyl-CoA thiolase activity Lari et al. (2014)
Rat liver #SOD activity; #CAT activity; #vitamin C Ahmadi-Naji et al.

(2017)
Rat serum "TNF-�; "8-iso-prostaglandin F2� Moallem et al. (2014)
Rat serum "ALT; "AST; "NO; "MPO; #GPX; #SOD Beydilli et al. (2015)
Rat serum "ALT; "AST; "ALP; "VLDL; "Cho Kalender et al. (2005)
Rat serum "MDA; "PC; "TNF-�; #HDL; "VLDL; "TC Ahmadi-Naji et al.

(2017)
Rat serum "Urea; "creatinine; "MDA; "urinary glucose Boroushaki et al. (2013)
Rat serum "COX-2; "iNOS; "IL-6; "TNF-� Ogasawara et al. (2017)
Mice serum "LDL; "VLDL; "Cho; "creatinine; #glucose; #RBC; #Hb; #HCT; #PLT;

"lymphocytes, "neutrophils
Zeinali et al. (2017)

Rat pancreas #Viability of cells; "blood glucose; #weight; "OS markers; "caspases-9;
"caspases-3; "ATP depletion

Khaksar et al. (2017)

Rat heart "MDA; #GSH; "caspase-3; "Bax; #Bcl-2; "cytochrome C; "Bax/Bcl-2 ratio Razavi et al. (2013)
In vitro

HCT116 cell
lines

"ROS; "MDA; "DNA fragmentation Boussabbeh et al. (2016)

PaTu cell line "Caspases-3, -9; #thiol molecules; #mitochondrial activity; #mitochondrial
membrane potential

Shiri et al. (2016)

Human
sperm

#Sperm quality; "DNA fragmentation Salazar-Arredondo et al.
(2008)

ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Bcl-2: B-cell lymphoma 2; CAT: catalase;
COX: cyclooxygenase; DZN: diazinon; GPX: glutathione peroxidase; GSH: glutathione; HCT: hematocrit; HDL: High-density lipopro-
teins; iNOS: inducible nitric oxide synthase; IL-6: Interleukin 6; LDL: Low-density lipoprotein; MDA: malondialdehyde; MPO: Myelo-
peroxidase; NO: Nitric oxide; OS: oxidative stress; PC: protein carbonyl; PLT: platelets; ROS: reactive oxygen species; SOD:
superoxide dismutase; TC: total cholesterol; TNF-�: tumor necrosis factor-�; VLDL: Very-low-density lipoprotein.
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killing action (Rahimi Anbarkeh et al., 2014). How-

ever, cellular and molecular mechanisms by which

DZN affects spermatozoa and induces poor sperm

quality are still not well-understood. Therefore, there

is a need for further detailed studies with a focus on the

underlying mechanisms by which DZN induces repro-

ductive dysfunction and male infertility. In the follow-

ing sections, we will discuss general reproductive

effects of DZN, as well as possible mechanisms by

which it affects spermatogenesis and male infertility.

Materials and methods

The articles discussed in this review were obtained by

searching PubMed, Science Direct, Scopus, Google

Scholar, and ISI Web of Knowledge. We searched arti-

cles that were published from 1970 to 2017. To identify

relevant articles, we used the following keywords:

“diazinon,” “organophosphorus,” “fertility,” “male

infertility,” “spermatogenesis,” “testes,” “testicular

damages,” “sperm,” “semen,” “spermatozoa,”

“oxidative stress,” “apoptosis,” “DNA damage,”

“reactive oxygen species,” “sex hormones,”

“endocrine,” and “mitochondrial deficiency.” Initial

search yielded a total of 384 articles that were col-

lected, read, and classified as relevant or irrelevant

for the literature review. Relevant articles, at least to

some degree, had to examine the relationship between

DZN with impaired spermatogenesis and infertility.

Ultimately, a total of 94 articles were found that met

this criterion. The articles included original animal,

in vitro, and human studies. All of these articles were

published as peer-reviewed journals.

Structural changes

A large number of experimental studies have shown

that DZN has a significant effect on testes structure

and function (Adamkovicova et al., 2014; Dutta and

Meijer, 2003; Jorsaraei et al., 2010). Jorsaraei et al.

(2010) found that intraperitoneal DZN administration

(25 mg/kg) causes a significant reduction in both

seminiferous tubule size and germ cells count. The

intraperitoneal and oral administration of DZN has

been also reported to be associated with degeneration

and necrosis of seminiferous epithelium, tubule delu-

minization, and testicular atrophy (Toman et al.,

2009). These lesions can lead to decreased fertility

or induced infertility (Toman et al., 2016). Dutta and

Meijer (2003) indicated a significant reduction in

lumen diameter of tubules, seminiferous tubule dia-

meter, number of germ cells, and spermatozoa after

2 weeks of exposure to DZN. Reduced number of

spermatogenic, Sertoli, and Leydig cells were found

following exposure to DZN (Hatjian et al., 2000; Mai-

tra and Sarkar, 1996; Salem, 1998). Toman et al.

(2009) found that germ cells lost their contact with

the basal lamina after DZN treatment. Another histo-

logical study showed disruption and sloughing of

basal germinal epithelium and vacuoles after oral

administration of DZN in rat testis (Damodar et al.,

2012). Since seminiferous tubules are a main source

of sperm production, adverse effects of DZN on their

structure can be associated with impaired spermato-

genesis and reduced number of spermatozoa.

Several studies have also reported that DZN can

cause a decrease in reproductive organ weights, such

as seminal vesicle and prostate (Abd el-Aziz et al.,

1994; Jayachandra and D’Souza, 2013). El-Hoda and

Zidan (2009) observed a reduction in the testis and

vesicular gland weights after intraperitoneal treatment

to DZN. Testicular atrophy with weight loss was

observed after DZN treatment (10 mg/kg) in male dogs

(Earl et al., 1971). Therefore, degenerative changes in

testicular structure can be considered as one of the

main mechanisms of DZN that may be associated with

impaired spermatogenesis, decrease in the number of

spermatocytes, spermatids, spermatozoa, poor sperm

quality, and eventually fertility failure (Figure 1).

Spermatogenesis deficiency

Increaseing evidence has demonstrated that DZN can

lead to fertility problems through the inhibition of

spermatogenesis (Dutta and Meijer, 2003; Pina-

Guzman et al., 2005). Earl et al. (1971) showed

testicular atrophy with completely arrested spermato-

genesis after DZN treatment in male dogs. Similarly,

Fattahy et al. (2007) showed that DZN can arrest

spermatogenesis, which is subsequently associated

with reduced number of germ cells, blood vessels,

spermatocytes, spermatids, and sperm cells. Several

studies have also shown reduced numbers of Leydig

and Sertoli cells after DZN treatments, which is sub-

sequently associated with decreased level of serum

testosterone and impaired spermatogenesis (Fattahi

et al., 2009) (Figure 1). Therefore, DZN can cause

impaired spermatogenesis through the induction

of testicular cell damage and reduced level of

testosterone. However, oxidative stress (OS) induced

by reactive oxygen species (ROS) is the other

significant mechanism of DZN toxicity that can be

associated with germ cell damage and impaired

Harchegani et al. 3



spermatogenesis. The effect of OS will be further

discussed in the following sections.

Semen quality

DZN is now considered one of the significant insecti-

cides that increases poor semen quality and sperm

aneuploidy in men (Swan et al., 2003). Many studies

have proposed that maturing spermatozoa are possi-

ble targets of DZN effect in the testis. Pina-Guz-

mán et al. (2005) showed that spermatozoa are very

sensitive to DZN during the late steps of matura-

tion. They also revealed that DZN administration

(8.12 mg/kg) causes severe damage to mice sper-

matozoa (Pina-Guzman et al., 2005). Decreased

numbers of germ cells, spermatogenic cells, sper-

matocytes, and spermatids also have been reported

in previous research (Fattahi et al., 2009; Hatjian

et al., 2000; Maitra and Sarkar, 1996; Salem,

1998). As germ cells are a critical step in the sper-

matogenesis process, decreases in the number of pro-

genitor cells can inhibit the production of viable

spermatozoa. Toman et al. (2016) investigated the

effect of DZN exposure on rat sperm motility by

computer-assisted semen analysis. They observed that

intraperitoneal exposure to DZN (20 mg/kg) is asso-

ciated with reduced sperm motility, progressive moti-

lity, beat cross frequency (BCF), and increased

amplitude of lateral head displacement (Toman et al.,

2016). Similarly, Lifeng et al. (2006) observed a signif-

icant reduction in BCF following exposure to insecti-

cide fenvalerate among occupational workers. Several

studies have reported increased frequencies of

sperm with abnormal morphology in DZN-exposed

Figure 1. Mechanisms for the effects of DZN on impaired spermatogenesis and male infertility. DZN decreases sper-
matogenesis and leads to male infertility through several mechanisms, including massive ROS production and OS, reduced
activity of antioxidants, testicular cell damage, decreased production and secretion of testosterone, mitochondria defi-
ciency, inflammation, and apoptosis. DZN: diazinon; ROS: reactive oxygen species; OS: oxidative stress; LH: luteinizing
hormone; FSH: follicle-stimulating hormone.
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individuals. In a previous study, Abd el-Aziz et al.

(1994) found increased percentages of dead and mor-

phologically abnormal spermatozoa in DZN-treated

male rats. Toman et al. (2016) illustrated that DZN

affects the sperm morphology with increases mainly

in tail abnormalities. Increased frequency of sperm

aneuploidy was also reported in men occupationally

exposed to OP derivatives such as ethyl-parathion,

methamidophos, and DZN (Akturk et al., 2006; Recio

et al., 2001). Therefore, deterioration of sperm quality

and decreases in sperm motility, counts and normal

morphology can negatively affect fertilization success

and induce male infertility (Figure 1).

Sperm DNA damage

Sperm chromatin and DNA damage at different

stages of spermatogenesis is now considered one of

the other mechanisms by which DZN induces male

infertility (Salazar-Arredondo et al., 2008). Although

sperm DNA integrity is protected by its highly com-

pacted structure, a great number of studies have

revealed that DZN can induce severe DNA damages

(Pina-Guzman et al., 2005; Salazar-Arredondo et al.,

2008; Zhang et al., 2012). Epidemiological studies

have shown sperm chromatin and DNA alterations

in men exposed to several OPs (Akturk et al., 2006;

Recio et al., 2001; Sanchez-Pena et al., 2004). Pina-

Guzman et al. (2005) demonstrated an alteration in

sperm chromatin condensation and DNA damage

during late spermatid differentiation through the epi-

didymis after acute exposure to single doses of DZN.

Several in vivo studies reported that DZN alters

sperm chromatin and DNA and promotes local apop-

tosis (Salazar-Arredondo et al., 2008; Sarabia et al.,

2009). Epigenetic modifications may be also another

mechanism of DZN effect on DNA damage. A study

showed that DZN can modify gene promoter with

DNA methylation (Zhang et al., 2012). DZN-

induced DNA fragmentation in cells deriving from

large intestine, liver, and kidney was also shown in

previous studies (Boussabbeh et al., 2016; Tsitsimpi-

kou et al., 2013). Since sperm chromatin condensa-

tion and DNA integrity are critical for the proper

transmission of paternal genetic information, DZN

toxicity can be associated with irreversible changes

in sperm chromatin structure, defects in fertilizing

ability, and embryo development (Figure 1). DZN-

induced OS may be a main reason for sperm DNA

fragmentation and chromatin abnormalities in

exposed individuals.

Endocrine disruption

Recent evidence has revealed that DZN can also dis-

turb levels of sex hormones, which are critical for the

regulation and initiation of spermatogenesis. Gonado-

tropins (follicle-stimulating hormone (FSH) and lutei-

nizing hormone (LH)) and testosterone are the main

regulators of germ cells development and spermato-

genesis. The action of LH is mediated through the

production of testosterone by the Leydig cells

(Simoni et al., 1999). FSH and testosterone act

through the Sertoli cells and stimulate all phases of

spermatogenesis. FSH is also essential for the devel-

opment of Sertoli cells and for induction and mainte-

nance of normal spermatogenesis (Ramaswamy and

Weinbauer, 2014). Therefore, abnormal spermatogen-

esis may be often associated with altered contents of

serum gonadotropins and testosterone. Several lines

of studies have shown significant changes in plasma

levels of gonadotropins and testosterone in DZN-

exposed subjects (Sarkar et al., 2000; Shan et al.,

1995). Fattahi et al. (2009) demonstrated that DZN

administration can have adverse effects on reproduc-

tive function by decreasing the mass of testis and

testosterone level and increasing the concentrations

of LH and FSH. Some studies indicated that DZN can

enter the pituitary gland and lead to increases in cir-

culating LH and FSH levels by suppressing the neg-

ative feedback at the anterior pituitary (Fattahi et al.,

2009). Increased levels of serum LH are associated

with germinal cells disruption and spermatogenesis

deficiency (Ibrahim and El-Gamal, 2003; Izumi

et al., 2005). Civen and Brown (1974) suggested that

OPs can decrease serum steroid hormone levels by

increasing steroid catabolism and inhibition of steroi-

dogenesis. In another study, Chattopadhyay et al.

(2005) illustrated that OPs can inhibit steroidogenesis

in adrenal cells. Given the regulatory function of tes-

tosterone for differentiation of sex organs and sper-

matogenesis, maintenance of testosterone levels is

critical for normal spermatogenesis and fertility

(Pidoux et al., 2007; Watanabe et al., 1986). There-

fore, decreases in serum testosterone levels induced

by DZN may cause impaired spermatogenesis and

infertility (Abd el-Aziz et al., 1994) (Figure 1).

Mitochondrial deficiency

Mitochondria are critical for sperm normal function

and fertilization process. They generate ATP and

ROS, which are needed for proper sperm function and

capacitation (Amaral et al., 2013). They also serve as
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intracellular Ca2þ stores, and their membrane poten-

tial is crucial for energy maintenance of sperm moti-

lity (Piomboni et al., 2012). Therefore, defects in

sperm mitochondria can be correlated with massive

production of ROS, OS, loss of sperm function, and

fertilization rate.

Many experimental studies have revealed that

DZN can induce mitochondrial damage through the

loss of mitochondrial membrane potential and

decreased mitochondrial activity (Aluigi et al.,

2010). Shiri et al. (2016) demonstrated that DZN

treatment caused a 46% decrease in the percentage

of mitochondrial activity and a 23% decline in mito-

chondrial membrane potential, which was associated

with increased activities of caspase-3 and caspase-9

and subsequently apoptosis. Mitochondrial damage

triggers the caspase cascade leading to increased

apoptosis. Razavi et al. (2013) indicated that DZN

promotes release of cytochrome C from mitochondria

to the cytosol, which in turn is associated with higher

activity of caspase 3, Bax protein, and eventually

apoptosis. In another study, Aluigi et al. (2010) con-

sidered DZN as a specific biomarker of DZN toxicity

that increases the loss of mitochondrial potential and

apoptosis in a dose-dependent manner. Therefore,

these data suggest that mitochondrial damage plays

a critical role in DZN-induced cell death, which can

affect sperm motility, capacitation, and fertility rate

(Figure 1).

Apoptosis

Recent studies have indicated that apoptosis is a main

cytotoxic mechanism of DZN on sperm cells (Bagher-

pour Shamloo et al., 2016). Several lines of experi-

mental studies have demonstrated that cell incubation

with DZN resulted in the reduction of cell viability, as

well as apoptosis and necrosis (Boussabbeh et al.,

2016; Khaksar et al., 2017; Lari et al., 2015; Shiri

et al., 2016). DZN-induced cell death and apoptosis

also have been reported in other cell types, including

ovarian follicular cells, cardiac muscle cells, periph-

eral blood lymphocytes, and skeletal muscles (Aluigi

et al., 2010; Pournourmohammadi et al., 2005).

Increased activities of caspases-3, -8, and -9 as well

as increased contents of Bax and reduced levels of

Bcl-2 (enhanced Bax/Bcl-2 ratio) are considered as

one of the main mechanisms by which DZN induces

apoptosis (Boussabbeh et al., 2016). Caspase-3, which

is released after cell damage, induces apoptosis, while

Bcl-2 suppresses the apoptotic response (Truong-Tran

et al., 2001). In a recent study, Boussabbeh et al.

(2016) have revealed that DZN induces caspases acti-

vation and cell death.

OS induced by ROS is another significant mechan-

ism by which DZN stimulates apoptosis (Colovic

et al., 2015). Recent studies have reported that

increased level of ROS and OS in seminal plasma

of infertile patients is associated with higher levels

of caspase-3 and apoptosis (Agarwal and Said,

2005; Wang et al., 2003). ROS are highly reactive

free radicals that cause cell damage and apoptosis

through the oxidation of cellular lipids, proteins, and

DNA (Colagar et al., 2009b). They also lead to cell

damage and apoptosis through the induction of cas-

pases, as the primary drivers of apoptosis, and release

of mitochondrial cytochrome c (Layali et al., 2015).

Tumor necrosis factor-� (TNF-�), which has been

reported in DZN-exposed subjects, is another factor

that induces apoptosis (Ahmadi-Naji et al., 2017).

Therefore, DZN exposure can be associated with

apoptosis of sperm cells in early stages of spermato-

genesis, as well as the spermatocyte maturation stage,

resulting in hypogonadism, poor sperm quality, and

male infertility (Figure 1).

OS and inflammation

Increased production of ROS and OS can be consid-

ered as the major molecular and cellular mechanism

of DZN toxicity on poor sperm quality and male infer-

tility (Fattahy et al., 2007). OS is defined as a distur-

bance in the balance between the production of ROS

and cellular antioxidant defense systems (Colagar and

Marzony, 2009). ROS, which has been reported in

semen of 25–40% of infertile patients, are highly oxi-

dizing molecules that can interact with DNA, pro-

teins, and unsaturated fatty and cause severe

abnormalities in spermatozoa (Agarwal et al.,

2014a; Colagar et al., 2009a).

Human spermatozoa are very susceptible to ROS

because of the high concentration of polyunsaturated

fatty acids (PUFAs) in their plasma membrane (Mak-

ker et al., 2009). PUFAs are essential for the fluidity

of sperm membrane, ion transport, and events that

occur during the capacitation, oocyte fusion, acro-

some reaction, and fertilization process in the female

reproductive tract. ROS-induced peroxidative dam-

ages may also deplete cellular ATP resulting in

decreased phosphorylation of axonemal proteins and

transient impairment of motility, as well as decreased

sperm viability (Agarwal et al., 2014b). Therefore,
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ROS-induced membrane lipid peroxidation can

decrease the fluidity of sperm, membrane transport,

survival of spermatozoa, sperm counts, motility,

normal morphology, and male fertilization poten-

tial (Tahmasbpour et al., 2014). ROS can also tar-

get sperm DNA by causing DNA fragmentation,

base modification, DNA strand breaks, deletions,

frameshift mutations, and chromatin cross-linking

(Aitken et al., 2010; Bellver et al., 2010; Tahmasb-

pour et al., 2014; Wright et al., 2014; Zribi et al.,

2011). DNA damage can be associated with germ

cells apoptosis and impaired spermatogenesis, lead-

ing to decreases in sperm counts and male inferti-

lity (Singh et al., 2003).

Although sperm mitochondria serve as an ROS

generator in order to promote capacitation and acro-

some reaction, leucocytes and morphologically

abnormal spermatozoa or immature sperm cells are

the other sources of ROS generation in human semen

(Agarwal and Sekhon, 2011; Colagar et al., 2007).

Therefore, increased number of these cells in male

reproductive organs can be associated with excessive

production of ROS, increased OS, poor quality of

spermatozoa, and infertility. Many studies have

revealed that DZN administration is associated with

increased values of leukocytes, proinflammatory

responses, and oxidative damages (Ahmadi-Naji

et al., 2017; Moallem et al., 2014; Tsitsimpikou

et al., 2013). In a more recent study, Ogasawara et al.

(2017) have suggested that DZN can activate macro-

phages and enhance proinflammatory responses (Oga-

sawara et al., 2017). They have shown that DZN not

only enhances the number of macrophages and produc-

tion of proinflammatory markers such as IL-6 and

TNF�, but also it increases the expression of cycloox-

ygenase (COX)-2 and inducible nitric oxide synthase

enzymes as a major source of ROS (Ogasawara et al.,

2017). Similarly, Hedayati and Hassan Nataj Niazie

(2015) and Zeinali et al. (2017) observed that DZN

treatment significantly increases the number of leuko-

cytes, especially lymphocytes and neutrophils. These

data suggest that DZN-induced toxicity can accumu-

late inflammatory cells including macrophages and

neutrophils with a subsequent release of chemical med-

iators of inflammation such as interleukins and growth

factors that can recruit and activate other leukocytes in

reproductive system. Activated leukocytes can produce

high levels of ROS, which in turn may overwhelm the

antioxidant defense systems, resulting in OS.

Numerous studies have illustrated that DZN causes

oxidative damages to DNA, proteins, and lipids

(Boussabbeh et al., 2016; Pakzad et al., 2013; Shah

and Iqbal, 2010). Ahmadi-Naji et al. (2017) observed

that exposure to DZN is associated with increased

contents of lipid peroxidation (malondialdehyde) and

protein oxidation (protein carbonyl) biomarkers.

In another study, Boussabbeh et al. (2016) indicated

that the acute and chronic exposure to OPs is signifi-

cantly correlated with the enhanced production of ROS

and lipid peroxidation in cells deriving from large

intestine. Oksay et al. (2013) showed that DZN induces

OS in rat testis by increasing lipid peroxidation levels

and reducing glutathione (GSH), vitamin C, and vita-

min E contents. Therefore, overproduction of ROS by

DZN-induced phagocyte cells causes oxidative dam-

age to sperm DNA, protein, and membrane PUFA,

which may be correlated with impaired spermatogen-

esis, apoptosis, and low quality of sperm (Figure 1).

DZN not only induces ROS generation through

mitochondrial deficiency (Brimfield et al., 2012;

Kumar et al., 2015), but it also increases the number

of morphologically abnormal spermatozoa, which are

the main sources of ROS in seminal plasma. There-

fore, the increased number of abnormal sperm cells

affects their mitochondrial function and subsequently

elevates production of ROS, which in turn influences

sperm function (Agarwal et al., 2014b; Henkel, 2011).

Another important mechanism by which DZN can

increase OS is modulated by its negative effects on

seminal plasma antioxidants or enzymes that reduce

the other antioxidants (Figure 1). Recent data have

illustrated that DZN can reduce the antioxidant capac-

ity of cells and disturb cellular redox capacity. For

instance, Shiri et al. (2016) have reported that DZN

causes a significant reduction in thiol molecules such

as GSH. GSH is a cofactor for several antioxidant

enzymes such glutathione-S-transferase (GST) and

glutathione peroxidase (GPX). Interestingly,

decreased activity of GPX and GST was reported after

DZN treatment (Beydilli et al., 2015). Some studies

showed that treatment with GSH prodrug such as N-

acethylcysteine can reduce OS and toxicity induced

by DZN (Oksay et al., 2013). Several studies found

that chronic exposure to DZN can reduce the activity

of GST-�3 enzyme (Pourtaji et al., 2016; Sastry and

Malik, 1982). This enzyme is critical in the cellular

detoxification of xenobiotics. It catalyzes the conju-

gation of toxins with GSH and produces less toxic and

more hydrophilic products that can then be partially

metabolized and excreted (Lasram et al., 2014).

Fujioka and Casida (2007) indicated the crucial role

of GST-3� in OPs detoxification. In a more recent
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study, Ahmadi-Naji et al. (2017) have shown that

DZN decreases the activity of superoxide dismutase

and catalase enzymes. Reduced contents of some low

molecular antioxidants such as vitamin C, vitamin E,

and �-carotene were observed after DZN exposure

(Oksay et al., 2013). Recent evidence has revealed

that DZN may induce OS through the downregulation

of peroxiredoxin-6 (PRDX6) (Lari et al., 2014; Pour-

taji et al., 2016). PRDX6 is an important antioxidant

enzyme that reduces cellular hydrogen peroxide

(H2O2). It also produces arachidonic acid using Phos-

pholipases A2 (PLA2), which is critical in apoptosis-

mediated TNF-�. Therefore, down-expression of

PRDX6 by DZN can promote cellular susceptibility

to H2O2-induced apoptosis (Kim et al., 2011). In other

research, Pourtaji et al. (2016) demonstrated that

DZN reduces the expression of 3-mercaptopyruvate

sulfurtransferase (MPST). MPST is a cellular antiox-

idant enzyme that plays an important role in regula-

tion of the redox system (Nagahara et al., 2013).

Therefore, overproduction of ROS induced by DZN

toxicity in reproductive system can decrease the

effective concentration of different enzymatic and

nonenzymatic antioxidants, increasing the harmful

effects of ROS on spermatozoa that are associated

with abnormal sperm parameters. Hence, seminal

plasma of DZN-treated individuals may be extremely

sensitive to decreases in body levels of antioxidants.

Conclusion

DZN causes a wide variety of structural and func-

tional defects in the male reproductive system, includ-

ing testicular lesions, Sertoli and Leydig cell damage,

disturbances in the levels of sex hormones, mitochon-

drial deficiency, impaired spermatogenesis, reduced

sperm quality, and infertility. It causes reproductive

dysfunction through multiple cellular and molecular

mechanisms. Excessive production of free radicals

and OS can be considered as the main mechanism

by which DZN directly contributes to sperm DNA

fragmentation, membrane lipid peroxidation, protein

oxidation, and consequently apoptosis and cell death.

It induces OS in the reproductive system with disrup-

tion of mitochondria, increased activity of ROS-

producing enzymes, depletion of enzymatic and

nonenzymatic antioxidants, accumulation of leuko-

cytes at the site of reproductive tissue, and inflamma-

tion reactions, resulting in imbalances in production

and detoxification of ROS. Therefore, treatments with

antioxidants may be valuable to protect reproductive

function against DZN-induced damage.
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