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Abstract

Background: Members of the genus Fusarium are common soil saprophytes and important plant pathogens which also cause a
wide spectrum of diseases ranging from onychomycosis to the life - threatening systemic infections. The antifungal susceptibility
patterns of Fusarium isolates varies in different species.
Objectives: This study was undertaken to investigate the antifungal susceptibility pattern of environmental and clinical Fusarium
isolates to conventionally - used azole antifungal drugs in Iran.
Methods: A total of 36 Fusarium isolates (16 clinical and 20 environmental) were included in this study. All environmental isolates
were obtained from the culture collection of medical mycology laboratory of the School of Public Health at Tehran University of
Medical Sciences, Tehran, Iran. Clinical isolates were obtained from patients with onychomycosis and were identified by PCR - se-
quencing of a fragment of translation elongation factor 1 alpha gene. All clinical and environmental isolates were tested for their in
vitro susceptibility to itraconazole (ITC) and voriconazole (VRC) according to the CLSI M38 - A2 standard. Statistical analysis of data
was performed using SPSS version 21.
Results: The majority of clinical isolates were identified as F. proliferatum (N = 6) followed by F. oxysporum (N = 4), F. solani (N = 3),
F. verticillioides (N = 1), F. acutatum (N = 1), and F. thapsinum (N = 1). The lowest minimum inhibitory concentration (MIC) values of
ITC was observed for environmental F. verticillioides isolates (N = 5, GM = 13.93 µg/mL). For VRC, the lowest MICs were recorded for
environmental F. verticillioides isolates (N = 5, GM = 2.3 µg/mL), and the highest MICs were observed for clinical F. solani isolates (N =
3, GM = 10.08 µg/mL). ITC was inactive against all clinical and the majority of environmental Fusarium isolates (MICs ≥ 16 µg/mL).
Significant differences were observed between MICs of ITC and VRC against environmental F. proliferatum and F. verticillioides isolates
(P < 0.001 for both). Similarly, the susceptibility of clinical F. proliferatum, F. oxysporum and F. solani isolates to VRC was significantly
different (P = 0.023).
Conclusions: The resistance pattern in Fusarium isolates is species specific and, therefore, identification at the species level is im-
portant for choosing the proper antifungal treatment.
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1. Background

Members of the genus Fusarium are ubiquitous com-
mon soil saprophytes and important plant pathogens and
can cause fusariosis in humans and animals (1, 2). In hu-
mans, a range of diseases including superficial and cu-
taneous infections in healthy individuals, locally invasive
or disseminated infections exclusively in immunocompro-
mised patients, and allergic or invasive sinusitis have been
reported as caused by Fusarium species (3-5). Onychomy-
cosis is a cutaneous infection which is considered to be a

major public health problem globally.

According to the literature (6, 7), Fusarium species
are common causative agents of non - dermatophyte
mould (NDM) onychomycosis. In addition, some species
can produce mycotoxins such as zearalenone and fumon-
isin which have been shown to be associated with dis-
eases in humans (8). Moreover, Fusarium species as plant
pathogens cause diseases in agricultural products which
result in significant economic loss (9). Moreover, con-
sumption of these contaminated agricultural products
can cause serious side effects in humans and animals (9).
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In recent years, significant contamination of wheat and
maize fields, particularly in humid and semi - humid areas
of Iran, have been reported (10).

Extensive use of azole compounds in agriculture to
prevent fungal contamination can develop drug - resis-
tant isolates either in the patient or in the environment.
Fusarium species currently show remarkable resistance to
most currently-available antifungal agents. Studies have
reported different susceptibility patterns within Fusarium
species (11-13). Amphotericin B, Voriconazole (VRC), itra-
conazole (ITC) and various combinations of these have
been reported with varying success rates against these
species (14, 15).

Although, the distribution of Fusarium species varies
globally, Fusarium solani, F. oxysporum and F. verticillioides
are the most frequent causes of fusariosis (16, 17). Molecu-
lar phylogenetic studies have revealed that this genus com-
prises species complexes and the majority of Fusarium iso-
lates cannot be identified to the species level using tradi-
tional morphological methods (4). For this reason, DNA se-
quence - based molecular tools are increasingly used for ac-
curate and reliable species determination (18).

2. Objectives

The goal of the present study was to assess the sus-
ceptibility pattern of clinical and environmental Fusarium
isolates to azole antifungal drugs conventionally used in
Iran. In addition, clinical Fusarium isolates collected from
patients with onychomycosis were identified using a se-
quence - based method.

3. Methods

3.1. Fungal Isolates

A total of 36 Fusarium isolates were included in this
study. Among them, 20 environmental isolates (15 F. prolif-
eratum and 5 F. verticillioides isolates) had been previously
identified (19) and obtained from the culture collection
of medical mycology laboratory of the School of Public
Health at Tehran University of Medical Sciences in Tehran,
Iran. The remaining 16 clinical isolates were collected from
patients with onychomycosis who referred to the medi-
cal mycology laboratory of the School of Public Health at
Tehran University of Medical Sciences in Tehran, Iran. All
the clinical isolates were identified using the molecular
method.

3.2. Molecular Identification

All 16 clinical isolates were cultured on sabouraud
dextrose agar (SDA) medium plates (Merck, Germany)
and incubated at 30°C for 2 - 4 days. The total ge-
nomic DNA was extracted using the glass - bead phe-
nol chloroform method as described elsewhere (20).
PCR was performed to amplify a fragment of translation
elongation factor 1 alpha (TEF1-α) gene using the primer
pair EF1 (5’-ATGGGTAAGGARGACAAGAC-3’ ) and EF2 (5’-
GGARGTACCAGTSATCATGTT-3’). The thermal cycling condi-
tions were as follows: 5 min of initial pre - incubation at
94°C, followed by 35 cycles consisting of denaturation at
94°C for 30 sec, annealing at 58°C for 35 sec, and extension
at 72°C for 1 min with a final extension at 72°C for 7 min.

The PCR products were electrophoresed on 1% (w/v)
agarose gel and then were visualized under an UV illumi-
nator. Afterwards, all PCR products were subjected to se-
quencing (Macrogen Inc., Korea). For species identification
of the isolates, the TEF1 - α sequences were compared to
GenBank data using the Basic Local Alignment Search Tool
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Molecular Evolu-
tionary Genetics Analysis (MEGA) software (version 6.0)
was used for phylogenetic analysis of the sequences (21).

3.3. Antifungal Susceptibility Testing

All clinical and environmental isolates were tested for
in vitro antifungal susceptibility according to the Clinical
and Laboratory Standards Institute (CLSI) broth micro - di-
lution method (M38 - A2) (22). Stock solutions of the ITC
(Sigma - Aldrich, USA) and VRC (Lyka, India) were prepared
in DMSO (Sigma - Aldrich, Germany) and diluted using
RPMI 1640 (Sigma - Aldrich, USA) medium buffered at pH
7.0 with morpholinepropanesulfonic acid (Sigma - Aldrich,
Germany) according to the CLSI M38 - A2. The final concen-
trations tested ranged from 0.03125 to 16 µg/mL. The den-
sity of the conidia suspensions were spectrophotometri-
cally adjusted to a final concentration of 0.4 × 104 to 5 ×
104 CFU/mL according to CLSI M38 - A2 (22) and the min-
imum inhibitory concentration (MIC) values were deter-
mined after 48 h of incubation at 35°C. Candida parapsilo-
sis ATCC 22019 and C. krusei ATCC 6258 were used as quality
control strains. All tests were performed in duplicate.

3.4. Ethical Approval

The study protocol conforms to the ethical guide-
lines of the 1975 Declaration of Helsinki as reflected in a
priori approval by the Tehran University of Medical Sci-
ences’s human research committee (Ethics approval code:
IR.TUMS.REC. 1394 - 763).
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3.5. Statistical Analysis

Statistical analysis of data were performed using
ANOVA and t-test in SPSS version 21 and P less than 0.05 was
considered significant.

4. Results

4.1. Molecular Identification

The TEF1 - α sequences of 16 clinical isolates (F1 - F16)
were deposited into GenBank and received accession num-
bers. According to the results of the sequence analysis, the
majority of clinical isolates were identified as F. prolifera-
tum (N = 6) followed by F. oxysporum (N = 4). The detailed
results of the molecular identification and the GenBank ac-
cession numbers are shown in Table 1. The phylogenetic
tree of the 16 clinical Fusarium isolates (F1 - F16) and 15 Gen-
Bank sequences based on the partial TEF1 -α gene is shown
in Figure 1.

4.2. Antifungal Susceptibility Testing

The MICs of ITC and VRC for the quality control strains
(C. parapsilosis ATCC 22019 and C. krusei ATCC 6258) were
within expected ranges (22); therefore, the results of an-
tifungal susceptibility testing were reliable. According to
the results of the present study, ITC was inactive against all
clinical as well as the majority of environmental Fusarium
isolates (MICs ≥ 16 µg/mL). The lowest MICs of ITC was ob-
served for environmental F. verticillioides isolates (N = 5, GM
= 13.93 µg/mL).

In comparison to ITC, better activity was obtained us-
ing VRC against all Fusarium isolates. The lowest MICs were
recorded for the environmental F. verticillioides isolates (N
= 5, GM = 2.3 µg/mL), and the highest MICs were observed
for the clinical F. solani isolates (N = 3, GM = 10.08 µg/mL).
Additional data on the antifungal susceptibility results are
shown in Table 2.

4.3. Statistical Analysis

According to the results of statistical analysis, the MICs
of the environmental F. proliferatum (N = 15) and F. verticil-
lioides (N = 5) isolates for ITC and VRC were significantly
different (P < 0.001 for both). Similarly, there were sta-
tistically significant differences between the MICs of the
clinical F. proliferatum (N = 6), F. oxysporum (N = 4), and F.
solani (N = 3) isolates for VRC (P = 0.023). However, the MICs
of these species for ITC were not statistically different (P =
0.072). The source of isolates was a factor which affected
the results of antifungal susceptibility testing of VRC. In
this regard, the MICs of VRC between the environmental
and clinical F. proliferatum isolates were significantly differ-
ent (P = 0.02) while the same condition was not observed
for ITC (P = 0.334).

5. Discussion

Fusarium species are plant pathogens distributed
worldwide and cause diseases in many agriculturally
important crops. The cause of the damaging effect of
their presence as food contaminants is their production
of highly toxic secondary metabolites (8, 10). In addition,
Fusarium species cause a very wide spectrum of diseases in
humans, ranging from superficial infections to dissemi-
nated infections with high morbidity and mortality rates
(4). Onychomycosis is a common type of cutaneous infec-
tion affecting both the fingernails and toenails. Fusarium
spp. have been reported frequently as common causative
agents of NDM onychomycosis in Iran and other countries
(6, 24-26).

Although conventional methods such as microscopic
examination and culture are available in most laboratories
for the diagnosis of onychomycosis, it is difficult to differ-
entiate the Fusarium species on the basis of morphologi-
cal features. Therefore, molecular methods have been de-
veloped for accurate and reliable identification of fungal
pathogens to the species level (18, 27).

In this study, 16 clinical Fusarium isolates (F1 - F16) were
identified using PCR - sequencing of the TEF1 - α gene.
The majority of isolates were found to be F. proliferatum
and were similar to the environmental strains obtained
from the culture collection. These results are indicative of
the notable pathogenic potential as well as the increased
prevalence of this species in the environment. Among the
16 clinical isolates, six distinct species were identified. Con-
sidering the different susceptibility patterns of the various
species (11-13), the high diversity of clinical isolates in our
study highlights the need for accurate identification of eti-
ologic Fusarium species and antifungal susceptibility test-
ing in order to prescribe efficient treatment.

Overall, Fusarium spp. show high MICs to available
antifungal agents; hence choosing the optimal treatment
strategy is a challenge (13, 27-29). According to the CLSI,
filamentous fungi with MIC values of ≤ 8 µg/mL are cate-
gorized as “susceptible” (22). Based on this standard, ITC
was inactive against all clinical and the majority of envi-
ronmental Fusarium isolates. The results obtained in this
study are in agreement with results of other studies that
reported low activity of ITC against Fusarium species (13, 15,
30, 31). On the other hand, in the present study, almost all
Fusarium species had high MICs above the published epi-
demiological cut - off values and were insensitive to ITC
with MICs ≥ 16 µg/mL which can lead to treatment failure
in patients infected with these strains.

Among the new triazoles, VRC is a recommended drug
(32) with moderate antifungal activity (MIC values of 1 -
8 µg/mL) depending on the species complex (27, 33). In
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Table 1. Demographic Data of Patients and Characteristics of 16 Clinical Fusarium Isolates Used for Antifungal Susceptibility Testing

Isolate number Gender/Age Isolation Source Molecular Identification GenBank Accession No.

F 1 Male/43 Nail scraping Fusarium solani KY801929

F 2 Female/62 Nail scraping Fusarium oxysporum KY801930

F 3 Male/30 Nail scraping Fusarium oxysporum KY801931

F 4 Female/54 Nail scraping Fusarium oxysporum KY801932

F 5 Female/45 Nail scraping Fusarium acutatum KY801933

F 6 Female/32 Nail scraping Fusarium proliferatum KY801934

F 7 Female/63 Nail scraping Fusarium proliferatum KY801935

F 8 Female/57 Nail scraping Fusarium solani KY801936

F 9 Female/33 Nail scraping Fusarium proliferatum KY801937

F 10 Female/62 Nail scraping Fusarium thapsinum KY801938

F 11 Male/65 Nail scraping Fusarium oxysporum KY801939

F12 Female/78 Nail scraping Fusarium proliferatum KY927140

F13 Female/64 Nail scraping Fusarium proliferatum KY927141

F14 Male/38 Nail scraping Fusarium proliferatum KY927142

F15 Male/53 Nail scraping Fusarium verticillioides KY962812

F16 Female/34 Nail scraping Fusarium solani KY962813

Table 2. The Results of Antifungal Susceptibility Testing of Iranian Clinical and Environmental Fusarium Isolates

Sample Type (N) Fusarium Species Antifungal Drugs (µg/mL)

Itraconazole Voriconazole

MIC Range GM MIC50 MIC90 MIC Range GM MIC50 MIC90

Clinical (16)

F. proliferatum (6) - > 16 > 16 > 16 > 16 - 2 - 8 4 4 8

F. oxysporum (4) - 16 - > 16 > 16 16 > 16 - 2 - 8 4 4 8

F. solani (3) - > 16 > 16 > 16 > 16 - 8 - 16 10.08 8 16

F. verticillioides (1) 16 - - - - 4 - - - -

F. acutatum (1) > 16 - - - - 4 - - - -

F. thapsinum (1) > 16 - - - - 2 - - - -

Environmental
(20)

F. proliferatum (15) - 16 - > 16 >16 > 16 > 16 - 2 - 16 6.65 8 8

F. verticillioides (5) - 8 - 16 13.93 16 16 - 2 - 4 2.3 2 4

Abbreviations: GM, geometric mean; MIC, minimum inhibitory concentration.

the present study, VRC showed variable antifungal activ-
ity against all tested isolates. Clinical F. proliferatum iso-
lates (N = 6) showed lower MIC values (range: 2 - 8 µg/mL,
GM: 4 µg/mL) for VRC when compared to the environmen-
tally obtained isolates (N = 15; range: 2 - 16 µg/mL, GM: 6.65
µg/mL). This is probably due to previous exposure of the
environmental isolates to azole compounds in agriculture;
however, for this aspect, further studies are required.

In this study, two rare species belonging to the F. fu-
jikuroi complex, F. acutatum and F. thapsinum, were identi-
fied among the clinical isolates. In general, these two rare

species have the potential to act as causative agents of ony-
chomycosis. For instance, F. acutatum has been reported
from nail infections as an emerging human opportunist
which has thus far been detected in Asia and appears to
be restricted to the Middle East (34, 35). In other studies,
F. thapsinum, has been reported as causing eumycetoma
and has been also isolated from environmental sources (23,
35). Their patterns of in vitro susceptibility to antifungal
agents showed high MIC values for ITC (> 16 µg/mL) for
both species, which demonstrated resistance of these two
rare species. MIC values of VRC for the F. acutatum and F.
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Figure 1. The Phylogenetic Tree of 16 Clinical Fusarium Isolates and 15 Genbank Sequences Constructed Using the Neighbor - Joining Method in Molecular Evolutionary Genetics
Analysis Version 6.0 (20, 23)

thapsinum strains were 4 and 2 µg/mL, respectively.

Interestingly in this study most clinical isolates of F.
solani were resistant to the VRC as well as the ITC. The data
was similar to that of previous reports of poor activity
of antifungal drugs against the F. solani species complex.
This result is indicative of higher resistance of this species
in comparison with other species of the genus Fusarium
(13, 27, 28). Members of the F. solani species complex are
among the most common species present in both clini-

cal and environmental sources. Fusarial infections have
emerged in recent decades that are related to high mortal-
ity, especially in disseminated infections. In addition, VRC
is recommended as the first - line therapy for both superfi-
cial and disseminated fusariosis in immunocompromised
patients (32). This high drug resistance among Fusarium
species means that in vitro analysis of antifungal suscepti-
bility prior to drug administration might be important for
choosing the optimal treatment strategy.
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In conclusion, poor susceptibility of Fusarium isolates
to ITC and VRC was observed in this study. The MIC values
obtained showed that VRC exhibited significantly better in
vitro activity against all clinical and environmental Fusar-
ium isolates. The present antifungal susceptibility profiles,
however, shows that differences in antifungal susceptibil-
ity exist within the Fusarium species; therefore, accurate
identification of Fusarium pathogens and determination
of their susceptibility profiles is required.
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