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Abstract

Leber congenital amaurosis (LCA) is a heterogeneous, early-onset inherited retinal dystrophy, which is associated with severe visual impairment.
We aimed to determine the disease-causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was
found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed
typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing
was performed to analyse the proband DNA. A homozygous novel c.2889delT (p.P963 fs) mutation in the RPGRIP1 gene was identified, which
was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)-
interacting domain at the C-terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium
connecting process. Sanger sequencing showed complete co-segregation in this pedigree. This study provides compelling evidence that the
c.2889delT (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.
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Introduction

Leber congenital amaurosis (LCA; MIM #204000) is an autosomal
recessive inherited heterogeneous retinopathy, affecting 1 in every
80,000 people worldwide [1, 2]. LCA consists of rare early-onset reti-
nal dystrophies that constitute <6% of all retinal dystrophies and
impact approximately 20% of children attending schools for the blind

[3]. Severe and early visual loss (typically before the first year of
age), an oculo-digital sign of Franceschetti, sluggish pupillary light
reflex, nystagmus, blindness, visual impairment presented in infancy
and near-absent pupillary reflexes are the main clinical symptoms of
LCA [4, 5]. LCA is characterised by severe pigmentary degeneration
of the fundus, which typically starts in the mid-periphery and
advances towards the fovea and macula [6, 7].

The molecular genetic basis underlying LCA is clinically and
genetically heterogeneous; to date, around 22 genes with mutations
have been associated with pathogenesis of LCA [6, 8]. These
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mutations are involved in the various features of the photoreceptors
in the outer segment (OS), including development, protein transport-
ing, neurodevelopmental delay, phagocytosis and retinoid cycle [9].
Moreover, mutations in the same gene lead to variable phenotypes,
adding to the disease’s complexity [10].

It is well established that detection of genes related to inherited
LCA diseases has triggered major interests in ‘retinopathies’ [11].
Increase in patient recruitment to new gene- or mutation-specific tri-
als and overlaps between LCA and other inherited retinal diseases are
the main reasons for the misdiagnosis of LCA patients [8, 12].
Genetic or molecular methods have already highlighted the diagnostic
potential for more than 70% of LCA cases. Furthermore, a noteworthy
method to diagnosing the manifestation of this disease only using an
electroretinogram (ERG) is insufficient to document the rod and cone
responses in ~50% of LCA patients [13, 14]. In this regard, various
sequencing methods have contributed to the identification of possible
disease-causing mutations at the whole genome level, each different
regarding their turnaround feasibility, customised target capture and
time for sequencing of large quantities of data [15].

On the other hand, next-generation sequencing (NGS) technolo-
gies are the most available and promising methods to identify novel
disease-causing mutations [15–17]. In the last decade, the use of
NGS methods has dramatically increased, including methods like
whole genome sequencing (WGS), whole genome re-sequencing
(WGRS), whole exome sequencing (WES) and target exome sequenc-
ing (TES), for the identification of genotype–phenotype correlations
and novel allele pathogenicity in inherited diseases [18, 19]. Further-
more, NGS-based molecular analysis has been proven to be a strong
approach for diagnosis of heterogeneous monogenetic diseases, such
as LCA, in a large-scale level, which can be used towards genetic
counselling and potential gene replacement therapy [17, 20–22].

Here, we employed NGS-based mutation screening in an autoso-
mal recessive LCA (arLCA) in Iranian family to categorise the potential
phenotype–genotype correlation in the affected individuals and to
determine the proper impact of genetic factors on disease diversity.
These results helped find the particular mutation associated with the
disease and revealed the potential characteristics of the LCA mutation
spectrum in this population. Our finding provides evidence that a
homozygous novel c.2889delT (p.P963 fs) mutation in the retinitis
pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) gene
contributes to the progression of causativity and susceptibility vari-
ants in LCA patient. We provide genetic and clinical data to support
the contention that the recessive mutations in RPGRIP1 are responsi-
ble for arLCA in Iranian family. We have consequently shown this
deletion is most likely pathogenic by damaging the RPGRIP1 protein
structure in our studied family.

Materials and methods

Ethical statement

The research was approved by the Ethical Committees of the Southwest
Medical University. Written informed consent conforming to the tenets

of the Declaration of Helsinki (1983 Revision) [23, 24] was obtained
from all participants or their guardians before the study. Prospective

volunteers were informed of the purpose and procedure of the study.

Also, all clinical assessments were processed according to the local

Ethics Committee guidelines of Ophthalmology Center, Bina Eye Hospi-
tal, Tehran, Iran. The molecular biologists were blinded for all cases.

Patients and clinical assessment

The studies consisted of two patients including one proband (Fig. 1,

pedigree II: 1, arrow), and ten related family members with three gener-

ations of familial LCA were recruited in the Tehran, Iran, based on their
genetic and pedigree analysis (Fig. 1). The patients were diagnosed with

likelihood of LCA by experienced ophthalmologists. Demographic infor-

mation, inheritance patterns, ethnicity and other personal information,

such as age, gender, number of affected patients and members who
were accessible for sampling, were documented according to the inter-

viewer-administered questionnaire. A detailed clinical history and full

ophthalmic examinations were performed, including the best-corrected
Snellen visual acuity, Humphrey visual fields, slit-lamp biomicroscopy,

fundoscopy, optical coherence tomography (OCT, Carl Zeiss, Oberko-

chen, Germany), fundus photography (FA, Spectralis; Heidelberg Engi-

neering, Heidelberg, Germany) and standard electroretinography (ERG,
RetiPort ERG System; Roland Consult, Wiesbaden, Germany).

DNA sampling

Human genomic DNA (gDNA) was extracted from 2 ml of fresh periph-

eral blood leucocytes using standard Qiagen DNA extraction kit (Qiagen,

Hilden, Germany). Blood samples were collected from this pedigree
(Fig. 1) in EDTA tubes for DNA extraction. In addition, blood samples

Fig. 1 Schematic pedigrees showing in an arLCA family that is

described in this study. Family number and disease-causing mutation

are noted in above pedigree. Normal individuals are shown as clear cir-

cles (females) and squares (males), affected individuals are shown as
filled symbols, and carriers are shown as hemi-filled symbols. The

patient above the arrow indicates the proband (II: 1), where target

exome sequencing was performed with deletion mutation of RPGRIP1:

NM_020366:exon17:c.2889del.T:p.P963 fs.
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were taken from 100 LCA-unrelated, ethnically matched, healthy control
volunteers with no family history of eye disorders. The optical density

ratio of 260/280 ~ 1.8 and 260/230 > 1.5 was assayed for gDNA qual-

ity and concentration [25]. To access the novel LCA disease-causing

genes, we designed the homozygosity genome-wide sequencing using
TES analyses on the DNA sample from the proband.

Capture panel designing

Here, we used capture agilent probes that were used in previously

published studies [21, 26–28].

Library preparation and capture sequencing

The design of exome capture panels has been described in previous lit-
erature, according to the Illumina paired-end libraries (Illumina, Inc.,

San Diego, CA, USA) [21, 26, 27]. In brief, 2 lg of extracted gDNA of

the proband was randomly sheared into 300–500 bp fragments by soni-

cation. The 50 ends of all DNA fragments were phosphorylated by
polynucleotide kinase, and adenine was added at the 30 ends. Then,

hybridisation to the pre-capture libraries was quantified by the Pico-

Green fluorescence assay kit (Invitrogen, Carlsbad, CA, USA). Each cap-

ture reaction and 50 pre-capture libraries (60 ng/library) were pooled
together, and after washing, the panel was recovered using Agilent

Hybridization and Wash kit (Agilent Technologies, Santa Clara, CA,

USA). Finally, captured DNA libraries were sequenced on Illumina HiSeq

2000 (Illumina, Inc.) at the Baylor College of Medicine core facility,
following the manufacturer’s protocols.

Variant filtering and bioinformatic analysis

Paired-end sequencing illumine reads were aligned to the human hg19

reference genome using Burrows-Wheeler Aligner version 0.6.1 and

available public online UCSC database (http://genome.ucsc.edu/) [29].
Single nucleotide polymorphisms (SNPs) and insertions/deletions

(INDELs) variations were refined using a toolkit Atlas-SNP2 and Atlas-

Indel2 (GATK version 1.0.5974) [30]. Variant frequency data were
applied to online control databases, CHARGE consortium [31], Exome

Aggregation Consortium (ExAC), 1000 Genome Project [32], ANNOVAR

[33] and ESP-6500 [34] databases, to find the pathogenic mutations in

all candidate genes with a minor allele frequency of more than 5%.
Sequencing depth 4, estimated copy number 2, SNP quality 20 (score

20 represents 99% accuracy of a base call) and a distance between two

SNPs>5 are considered the filtrations criteria for candidate SNPs [35].

Because arLCA is a rare Iranian disorder, variants and deep intrinsic
exon–intron junctions were filtered out from the following analysis with

a frequency higher than 1/400 and distance >10 bp, respectively.

Altogether, an average of 3000 SNPs and INDELs was found after
applying these filters. Sequence variants were not annotated in any of

the above public databases. Consequently, the phenotypes of all cases

were similar, so we identified common variants among affected patients

(Fig. 1, pedigree II: 1).

Primer design, PCR amplification and Sanger
sequencing

For mutation confirmation and segregation analysis, polymerase chain

reaction (PCR) amplification and direct sequencing of prioritised vari-
ants were applied to the gDNA of all the patients. Accordingly, DNA

sequences of each identified mutation were obtained from the UCSC

Genome Browser. We designed locus-specific primers using the online

Primer3 program (http://primer3.ut.ee/) [36]. Then, the PCR products
were confirmed by Sanger sequencing methods on an ABI-3500DX

sequencer (Applied Biosystems Inc., Foster City, CA, USA) through the

specific primer sequences sorted in Table 1. Finally, the resultant
sequences were compared to consensus sequences by Seqman soft-

ware (Lasergene 8.0; DNASTAR, Inc., Madison, WI, USA). All reactions

were performed with two replicates per sample besides a non-reverse

transcription control and non-template control for each test.

Results

Pedigree and clinical phenotypes

The individual of interest (Fig. 1, II: 1) is a 14-year-old Iranian female
patient with a probed case of early clinical signs of LCA progression
from the age of 4. The lens examination revealed a posterior subcap-
sular cataract. Best-corrected visual acuities of the left and right eyes
were ranged between 20/100 and 20/30, respectively. Also, the pro-
band showed typical macular atrophy and high myopia. Tunnel vision,
decreased night vision and loss of peripheral (side) vision were
presented in all affected individuals, mutant homozygous type
(pedigree II: 1&2; Fig. 1) and absent in all mutant heterozygous
type (pedigree I: 2 & III: 2; Fig. 1). The present symptom for the pro-
band (pedigree II:1) was more severe with night blindness, decreased
central vision, visual acuity and especially the presence of fundus
flecks in the posterior pole of the retina. The representative fundus
photos of the affected individual and normal wild type (Fig. 1, II: 3)
are shown in Figure 2. FA results showed the ‘salt and pepper’ pig-
ment mottling pattern, severe retinal pigment epithelium (RPE)
atrophic changes, replacement of normal darkened colour with a cen-
tral reddish colour, and close mottling and transparency of the

Table 1 PCR sequences of RPGRIP1 primers, product size

Name Sequence (50-30) Size (bp) Tm (°C)

RPGRIP1- CII2L ACTGACCCTGCAGAGAAACC 350 60

RPGRIP1- CII2R ATGTTGGTCAGGCTGGTCTT
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macula. The FA of the proband showed dark choroid with staining of
white fundus flecks (Fig. 2, panel A) in comparison with the eyes of
healthy sex-/age-matched control (Fig. 2, panel B).

Furthermore, the FA finding was confirmed by OCT and ERG
imaging (Fig. 3). Panel A of Figure 3 presents the loss of the outer
retinal architecture, foveal atrophy and loss of normal foveal configu-
ration of the proband’s left eye, which was extremely apparent in the
macula. ERG results showed abnormality in the PRE lyres of proband
with cube volume of 8.9 mm3 and cube average thickness of
248 lm. In comparison, the cube volume and cube average thickness
features of the normal left eye of Iranian age-matched control were
9.5 mm3 and 264 lm (Fig. 3, panel B), respectively, which showed a
significant decrease in RPE in the proband case. This figure illustrates
a likely disruption of the photoreceptor layer and choroid that is
increased by thinning in RPE. To note, macular progressive depig-
mentation with pigment clumping and atrophy is seen as a major
complement to the proband.

Data sequencing of samples

To access novel LCA disease-causing genes, targeted capture
high-throughput sequencing of known RP-related genes was per-
formed successfully using a custom-designed capture panel on
the gDNA sample of an affected member (Fig. 1, pedigree II: 1).
We identified causative mutations in LCA patient by automatic
variant calling, filtering and annotation pipeline in the capture
sequencing data. The targeted regions with evenness scores more
than 0.8 across of all samples were converged. Commonly, 96.0%
of the targeted regions have coverage >209 and 91.1% of the
targeted regions have coverage >409. In all, more than 10 million
bases of the sequence with 100-bp read length, 40000 SNPs and
11400 INDELs were generated. After quality assessment, more
than 97% of billion bases were aligned to the human reference
sequences and, among those, billions of bases covered with a 10-
fold coverage target region. Finally, sequence variants that were

Fig. 2 Representative fundus photographs of patient II:1 (proband) from both eyes. Panel A. 14-year-old Iranian female patient. Panel B. Fundus
photographs of unaffected age-matched control. The comparison between two panels clearly has shown the ‘salt and pepper’ pigment mottling

pattern, severe RPE atrophic changes and the transparent in the macula in the patient that is afflicted with the disease.

1736 ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



not annotated in any of the above public databases were priori-
tised for further confirmation and characterisation.

Putative pathogenic mutation screening

Stepwise mutation identification strategy was used to identify patho-
genic variants for the included proband [17, 21, 37, 38]. We recog-
nised a single nucleotide homozygous deletion (c.2889delT) of
RPGRIP1 gene (NM_020366) in this arLCA, leading to a shift in the
reading frame at amino acid position 963 (Fig. 1 with pedigree II: 1).
This novel, possibly disease-causing mutation leads to a big deletion
in the C-terminal of RPGRIP1 protein after amino acid position 963
(p.P963 fs) (more than three-fourth deletion of RPGRIP1), due to a
frameshift resulting in 36 incorrect amino acids after codon 962,
followed by premature termination at codon 999 (p.P963 fs*999).

Mutation validation and segregation analysis

Albeit deficient, the Sanger sequencing was used for confirmation
c.2889delT variant of RPGRIP1 (Fig. 4). The c.2889delT variant was

confirmed in the mutant homozygous type patients (pedigree II: 1&2;
Fig. 4A and B) and mutant heterozygous type or carriers (pedigree I:
2 & III: 2; Fig. 4C and D) in the family. The c.2889delT variant was
co-segregated with the disease phenotype in this family’s members.
Figure 4E shows the representative Sanger sequencing for RPGRIP1:
NM_020366:exon17: c.2889delT; this mutant is absent in unaffected
family individuals and unrelated 100 normal controls, including those
without a family history of eye disease (wild type, depicted in Fig. 1
with pedigree III:2). These findings show complete co-segregation in
the pedigree for the arLCA family and pinpoint its role in LCA patho-
genesis.

Functional effects of pathogenic mutation

The overall alignment scores for RPGRIP1 SNPs and protein amino
acid (aa) residues, corresponding to the c.2889delT (p.P963 fs), are
shown in Figure 5. Fewer alignment scores of ≤40 aa were in the dele-
tion domain of the RPGRIP1, ranging within acid amine 963–999. This
novel, possibly disease-causing mutation, leads to more than three-
fourth deletion in the C-terminal of RPGRIP1 protein after amino acid
positions 963 (p.P963 fs). This domain is revealed to be the cognate

Fig. 3 Retinal phenotypes of proband. Panel A. Optical coherence tomography and electroretinography features of inherited retinal dystrophies in left
eye for II:1. Panel B. Representative optical coherence tomography and electroretinography left eye of control. This figure shows that the patient

had marked thinning and disruption of the photoreceptor layer, choroid and the retinitis pigment epithelium.

ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

1737

J. Cell. Mol. Med. Vol 22, No 3, 2018



RPGR-interacting domain (RID). Thus, this figure clearly shows that
p.P963 fs made the pathogenic deletion in the C-terminal of the
RPGRIP1 protein. The results point to the probability that p.P963 fs
frameshift mutation most likely leads to a larger, structurally abnormal,
unstable and certainly functional RPGRIP1 in the RID domain [14].

The deleterious and pathogenic aspects of c.2889delT (p.P963 fs)
mutation are presented in Table 2. The damaging consequence of
protein function analysis indicates that the variant in RPGRIP1 gene
was probably the ‘disease-causing’ and damaging mutation in the

Iranian arLCA family. Comprehensively, recessive RPGRIP1 homozy-
gous mutations, c.2889delT (p.P963 fs) mutation, cause severe LCA
in this study.

Discussion

Our study presented the phenotypic variety of an affected Iranian pro-
band in arLCA family with a novel c.2889delT (p.P963 fs) RPGRIP1

Fig. 4 Sanger sequencing validation. A, B,
C, D and E indicate the sequencing results

in II: 1, II: 2 (mutant homozygous type), I:

2, III: 2 (heterozygous type), N (wild type,

normal control: a normal person from no
eye disease history family), respectively.

The arrows indicate the deletion at the

nucleotide position NM_020366:exon17:
c.2889del.T in RPGRIP1 gene.

Fig. 5 Schematic diagram of the alignment scores for RPGRIP1 SNPs and protein amino acid residues, corresponding to the c.2889del.T:p.P963 fs.

The highlighted amino acid residues in blue are conserved the same. The mutation position is shown in the grey box. The red line shows the align-

ment scores ≥200, the tiny black line shows the alignment scores ≤40, and the dashed line shows the totally deletion part, between the query of
the mutations and wild type. ND, nuclear domain; C2-N, N terminal of protein kinase C conserved domain 2; C2-C, C-terminal of protein kinase C

conserved domain 2; CC, coiled-coil domain; RID, RPGR-interacting domain.
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homozygous mutation. These findings highlighted that the variant in
the RPGRIP1 gene is likely the deleterious and disease-causing muta-
tion in this family, thereby expanding the RPGRIP1 mutation spec-
trum for arLCA.

High rate of consanguineous marriages and the increase in inci-
dence of LCA in Iran provide a correct platform to study gene muta-
tions that cause LCA [39, 40]. Figure 6 proposes an approach used in
our group [21, 26, 27]; this flow chart gives an overview of the steps
followed in predicting the rise of the novel disease-causing mutations
according to NGS-based models [20]. This flow chart is designed for
genotype–phenotype descriptions and characterisation of any RP-
related disease, like this arLCA family, using a systematic approach to
sequence a set of novel disease-causing genes. According to this dia-
gram, the phenotypic features of our studied family included bilateral
LCA, each in an affected sibling. Several studies have shown that

various types of RPGRIP1 mutations have contributed to nearly two-
thirds of an autosomal recessive cone-rod dystrophy and some forms
of macular dystrophy disease [8, 11, 41].

The RPGRIP1 gene (NM #020366, OMIM #610937; similarly ter-
med as CORD13, LCA6, RGI1 and RGRIP) evolutionarily encodes
retinitis pigmentosa GTPase regulator-interacting protein 1
(RPGRIP1), with 1286 amino acids in length and a predicted molecu-
lar weight of 144 kD [42, 43]. The RPGRIP1 sequences have highly
conserved guanine nucleotide exchange factors that interact with
retinitis pigmentosa GTPase regulator (RPGR) [11]. Functionally,
RPGRIP1 is involved in many biological functions, such as nuclear
localisation, neural precursor cell proliferation, retina development in
the camera-type eye, disc morphogenesis, gene expression regulating
and disc morphogenesis [42]. The expression levels of RPGRIP1 are
greatly reduced in amacrine neurons and rod photoreceptors cells
[10, 44]. The RPGRIP1, as a scaffolding protein, is required for the
survival of photoreceptor cells with the normal location of RPGR at
the connecting cilium of photoreceptors’ OS in the retina [6, 43]. It is
well established that mutations in the RPGRIP1 gene are associated
with cilium dysfunctional syndromes, such as Joubert syndrome
(MIM #213300) [45], Leber’s hereditary optic neuropathy (LHON,
MIM #535000) [46] and Meckel syndrome (MIM #249000) [1, 47].
Our literature review shows that mutations in RPGRIP1 are responsi-
ble for more than 5% of type 6 LCA disease (LCA6, MIM #605446)
[11, 44]. However, the full frequency spectrum of variation in this
gene has not been estimated in most Asian countries. The LCA6 is
caused by mutations that affect genes represented in this study. It
has been found that RPGRIP1 serves as a scaffold to anchor

Table 2 Protein structure and disease-causing effects of RPGRIP1

SNPs in Iranian arLCA family

Exon
Variation

EXAC
Nucleotide* Protein* Type Status

17 c. 2889del.T p.P963 fs Deletion Homo Novel

c, variation at cDNA level; p, variation at protein level; Homo, homozy-
gote; ExAC, Exome Aggregation Consortium. *All nucleotide and
amino acid abbreviated according to the International Union of Pure
and Applied Chemistry (IUPAC).

Fig. 6 Flow chart showing an approach of
this kind of study. Flow chart for genetic

tests, selection of patients and WES sys-

tem in the Iranian LCA family that was
described in this study.
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regulatory complexes, including RPGR within the connecting cilium in
LCA6 patients. Eventually, mutations in RPGRIP1 lead to decreased
visual acuity, sensitivity in the central visual field and normal fundus find-
ings at birth followed by salt and pepper appearance of FA [6, 9, 40, 43].

In this family, we found a novel deletion in the C-terminal of
RPGRIP1 protein. The homology finding shows that this region of
RPGRIP1 is highly conserved and predicted a globular domain that is
involved in membrane and vesicular trafficking. This domain is
revealed in the cognate RID of C-terminus in RPGR-interacting
domain (Fig. 5) [43]. The absence of exon 17 would cause a misread-
ing of p.P963 fs frameshift that is estimated to lead to the loss of
whole RID domain in more than three-fourths of the RPGRIP1 pro-
tein. Functionally, with any deletions in the RID, the translocation of
RPGRIP1 protein to the proteolytic cleavage and nucleus of the N-
terminal domain will fail. Recently, studies have also suggested that
RPGRIP1 is an essential factor in maintaining polarised protein distri-
bution and cilium connection by restricting redistribution and/or
directional transport [42, 43].

LCA6 mutations were mapped in Asian LCA family, such as Chi-
nese [40, 48], Indian [49], Turkish [50] and Pakistani [51], according
to the identification of RPGRIP1 mutations. For example, in the series
of Khan et al. study, RPGRIP1 gene accounted for 9% of LCA6 cases
in Saudi Arabian families [44]. Dryja et al. screened seven LCA causa-
tive genes in 57 unrelated LCA6 cases and found RPGRIP1 mutations
in 6% of the patients [42]. In another genetic study, 5.6% of homozy-
gous nonsense mutations for RPGRIP1 were found in two consan-
guineous families with LCA6 [52]. Our patients presented severe
phenotypes of LCA (which may be LCA6), with no light perception
and fundus findings ranging from maculopathy to diffuse pigmentary
retinopathy [48–52]. Overall, our finding will aid in identifying the par-
ticular mutations that affect the molecular pathways of the LCA
patients, which would support the development of disease-causing
gene replacement. This approach observed any possible correlations
among genes investigated in all 18 types of LCA and avoided the
unnecessary exclusion of the candidates (Fig. 6). Although these
GWAS and WES studies defined RPGRIP1 gene as a remarkable can-
didate in LCA6, the interactions between RPGRIP1 experiences in the
RID and RPGRIP10s vital function for the survival of photoreceptor
cells affected those mutations are quite obscure in RPGRIP1-related
LCA [20]. With the help of numerous genetic studies, the

identification and characterisation of this novel mutation in LCA
extend the mutation spectrum of RPGRIP1 gene. Furthermore, defi-
nite functional consequences of this mutation and cloning of new can-
didate genes for LCA and RP patients are required.

To the best of our knowledge, this is the first report that applied
TES-based comprehensive genetic evaluation of LCA variations in Ira-
nian patients, supporting the evidence that this mutation contributes
to the causative or susceptible variant in a more severe form of LCA.
Our study extends the mutation spectrum of RPGRIP1 gene and con-
firms the genotype–phenotype relationship, which may be helpful in
genetic counselling and medical managements for LCA patients in
development countries, including in Iran.
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