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Abstract

The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic

disorder affects many physiological pathways and is a key underlying cause of a

multitude of debilitating complications. There is, therefore, a critical need for effective

diabetes management. Although many synthetic therapeutic glucose‐lowering agents

have been developed to control glucose homeostasis, they may have unfavorable side

effects or limited efficacy. Herbal‐based hypoglycemic agents present an adjunct

treatment option to mitigate insulin resistance, improve glycemic control and reduce

the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.),

whilst widely used as a food additive, is a natural product with insulin‐sensitizing and

hypoglycemic effects. Saffron contains several bioactive β carotenes, which exert their

pharmacological effects in various tissues without any obvious side effects. In this

study, we discuss how saffron and its major components exert their hypoglycemic

effects by induction of insulin sensitivity, improving insulin signaling and preventing

β‐cell failure, all mechanisms combining to achieve better glycemic control.
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1 | INTRODUCTION

The incidence of diabetes mellitus (DM) is growing worldwide

(Mayer‐Davis et al., 2017). Estimations suggest that the prevalence

of DM will increase from 14% in 2010 to about 21% by 2050 in the

US adult population (Boyle, Thompson, Gregg, Barker, & Williamson,

2010). However, it is possible that the overall prevalence of DM will

increase to about 33% in 2050 if the current trajectory continues

(Boyle et al., 2010). DM is the most prevalent metabolic disorder and

the underlying cause of many complications related to morbidity and

mortality (Boyle et al., 2010).

Uncontrolled diabetes can impair proper functioning of tissues and

organs by activation of pathophysiological mechanisms such as

oxidative stress, apoptosis, protein kinase c (PKC) isoforms, transcrip-

tion factors, and inflammation (Domingueti et al., 2016; Yaribeygi,

Atkin, & Sahebkar, 2018). These events can lead to debilitating

complications such as diabetic nephropathy (DN), diabetic retinopathy,

diabetic neuropathy, atherosclerosis, dementia, and cardiovascular
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disorders (Gonzalez‐Reyes, Aliev, Avila‐Rodrigues, & Barreto, 2016;

Maksimov et al., 2016; Putta, Peluso, et al., 2017; Yaribeygi, Atkin,

et al., 2018). DN is the leading cause of hemodialysis, and diabetes‐
induced cardiovascular problems are a major cause of death among

diabetic patients (Yaribeygi, Butler, Barreto, & Sahebkar, 2018;

Yaribeygi, Taghipour, & Taghipour, 2014). Similarly, diabetes‐induced
retinopathy is major cause of blindness (Nentwich & Ulbig, 2015).

There is, therefore, an ever increasing need to optimize the manage-

ment of diabetes (Schaper et al., 2016).

Several classes of synthetic antidiabetic agents such as insulin,

sulfonylureas, dipeptidyl peptidase 4 inhibitors, thiazolidinediones,

biguanides, sodium‐glucose cotransporter type 2 inhibitors, gluca-

gon‐like peptide‐1 receptor agonists and α‐glucosidase inhibitors are

currently available (Yaribeygi, Butler, et al., 2018). These drugs are

highly effective as hypoglycemic agents, but may have unfavorable

side effects (Chaudhury et al., 2017). Thus, the use of herbal‐based
antidiabetic agents as well as “nutraceuticals” is an attractive option,

as they generally are lower in cost, easily available, and often have a

better safety profile (Eddouks, Bidi, El Bouhali, Hajji, & Zeggwagh,

2014; Garg, 2016).

The use of nutraceuticals, defined as nutrient agents which

show beneficial properties on human health and are composed of

different plant‐derived nutrients as well as some vitamins and

biochemical compounds, is growing (Riya et al., 2014). The

evidence suggests that some nutraceuticals have potent hypogly-

cemic effects, lowering blood glucose by activating molecular

mechanisms (Garg, 2016; Putta, Yarla, et al., 2017; Riya et al.,

2014; Saleem, Sarkar, Ankolekar, & Shetty, 2017). One such

nutraceutical is saffron (L‐Crocus sativus) which not only exerts a

hypoglycemic effect but also shows antioxidant and anti‐inflam-

matory properties (Sarfarazi, Jafari, & Rajabzadeh, 2015). Saffron

exerts its hypoglycemic effects through several molecular mechan-

isms (Sarfarazi et al., 2015). Here, we review the literature

regarding the hypoglycemic actions of the nutraceutical saffron

and its constituents.

2 | GLUCOSE TRANSPORT ACROSS THE
CELL MEMBRANE AT A GLANCE

Glucose is a hydrophilic molecule with a high molecular weight of

180, and requires carriers to pass through cell membranes (Hall,

2015). Glucose has two primary ways to enter cells: (a) active

cotransport by a sodium dependent mechanism and (b) passive‐
facilitation via carriers (independent of sodium; Hall, 2015). Glucose

transporters (GLUTs) are a class of proteins which provide bidirec-

tional facilitated glucose transport across mammalian plasma

membranes based upon the glucose concentration gradient and this

is not therefore an energy consuming process (Chen & Lippincott‐
Schwartz, 2015; Hall, 2015). At least 14 members of the GLUT family

have been identified in humans, labeled as GLUT‐1 to GLUT‐14;
GLUT‐1, GLUT‐2, GLUT‐3 and GLUT‐4 are the most important in

glucose homeostasis (Hall, 2015; Huang & Czech, 2007). GLUT‐4 is

an insulin‐dependent isoform of the glucose carriers which, unlike the

other isoforms, is entirely dependent upon insulin (Hall, 2015;

Moraes‐Vieira, Saghatelian, & Kahn, 2016). GLUT‐4 has a molecular

weight of 54800 D and is mainly expressed in adipocytes,

cardiomyocytes, and skeletal muscle cells (Hall, 2015). GLUT‐4
resides in cytoplasmic vesicles but, in response to insulin, translo-

cates to the cell membrane and facilitates glucose entry into cells

(Hall, 2015; Huang & Czech, 2007). Since skeletal muscle cells act as

the main store for glucose (as glycogen), GLUT‐4 plays a key role in

whole body glucose homeostasis, especially in the postprandial state

(Huang & Czech, 2007).

3 | INSULIN SIGNALING PATHWAYS

Insulin signal transduction (IST) is initiated by the binding of insulin to

the insulin receptor (IR) which is composed of two chains, α and β

(Færch et al., 2016). Ligand binding to the α chain of IR induces

structural changes in the β chain by prompting auto‐phosphorylation in

tyrosine residues followed by downstream events such as recruitment

of different adaptor proteins (Hall, 2015; Kiselyov, Versteyhe, Gauguin,

& De Meyts, 2009). These events create a proper binding site for IR

substrate type 1 (IRS‐1; Kiselyov et al., 2009). Various insulin‐dependent
kinases, such as extracellular signal‐regulated kinase 1/2 (ERK1/2),

atypical PKC, S6K1, serine/threonine‐protein kinase 2 (SIK2), AKT,

mTOR, and ROCK1 can activate these binding sites by phosphorylating

them (Copps & White, 2012; Kiselyov et al., 2009). Some kinases, AMP‐
activated protein kinase (AMPK) and glycogen synthase kinase 3, for

example, phosphorylate IRSs and trigger downstream signal transduc-

tion independent of insulin (Copps & White, 2012). In the subsequent

step, activated IRS‐1 links to phosphoinositide 3‐kinase and activates it

which, in turn, catalyzes the conversion of phosphatidylinositol 4,5‐
bisphosphate (PIP2) to phosphatidylinositol 3,4,5‐trisphosphate (PIP3;

Ho, Sriram, & Dipple, 2016). PIP3 is itself a potent activator for PKB

(protein kinase B, also known as Akt) which facilitates glucose entering

into the cells by translocation of GLUT‐4, and inhibits glycogen synthase

kinase leading to more glycogen synthesis (Ho et al., 2016; Koeppen &

Stanton, 2017).

4 | SAFFRON (CROCUS SATIVUS L. )

Saffron is a plant of the Iridaceae family, which is traditionally used as a

food additive or spice (Yaribeygi, Sahraei, Mohammadi, & Meftahi,

2014). In addition to being a food coloring and aromatic spice, saffron

has historically been used as a therapeutic agent; even in ancient

documents, scientists such as Avicenna emphasized its potent

therapeutic properties (Hosseinzadeh & Nassiri‐Asl, 2013; Javadi,

Sahebkar, & Emami, 2013). Saffron extracts contain several potent β

carotenes, such as crocin, crocetin, picrocrocin, and safranal, and thus

can exert pharmacological effects in a wide variety of tissues (Rahmani,

Khan, & Aldebasi, 2017; Rameshrad, Razavi, & Hosseinzadeh, 2018).

Crocin, picrocrocin, and safranal are the major active ingredients in
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saffron, and account for the color, taste and odor, respectively, of this

spice (Rahmani et al., 2017). The saffron plant is now cultivated

worldwide, though 90% of world production is based in Iran

(Ghorbani, 2008).

4.1 | Pharmacological effects of saffron

The active ingredients of saffron are able to exert antioxidant

(Nikbakht‐Jam et al., 2015; Rahiman, Akaberi, Sahebkar, Emami, &

Tayarani‐Najaran, 2018; Yaribeygi, Mohammadi, Rezaee, & Sahebkar,

2018), anti‐inflammatory (Yaribeygi, Mohammadi, Rezaee, et al., 2018),

memory enhancer (Abe & Saito, 2000; Ghadrdoost et al., 2011),

antitumor (Hoshyar & Mollaei, 2017; Moradzadeh, Sadeghnia, Tabar-

raei, & Sahebkar, 2018), antidepressant (Jam et al., 2017; Lopresti &

Drummond, 2014; Shafiee, Arekhi, Omranzadeh, & Sahebkar, 2017),

antiasthma (Javadi, Sahebkar, & Emami, 2017), cough suppressant

(El‐Alfy, 2017), cardiovascular protection (Hatziagapiou & Lambrou,

2018; Sobhani, Nami, Emami, Sahebkar, & Javadi, 2017), neuroprotec-

tion (Wang et al., 2015), visual function improvement (Liou et al., 2018;

Riazi et al., 2017) and sexual behavior potentiation effects (Malviya,

Malviya, Jain, & Vyas, 2016; Sadoughi, 2017; Table 1). This evidence

implies that the active compounds of saffron can alter molecular

mechanisms by affecting transcription factors, growth factors and

diverse intracellular signaling pathways (Samarghandian, Azimi‐Nezhad,
& Farkhondeh, 2016; Yang et al., 2017; Yaribeygi, Mohammadi, Rezaee,

et al., 2018). Moreover, studies indicate the potent hypoglycemic effects

of saffron and its bioactive ingredients/β carotenes (Shirali, Zahra

Bathaie, & Nakhjavani, 2013). Improvement of the glycemic profile by

saffron components can prevent diabetic complications by inhibition of

hyperglycemia‐induced pathophysiologic molecular pathways (Yaribeygi,

Mohammadi, Rezaee, et al., 2018; Yaribeygi, Mohammadi, & Sahebkar,

2018). Saffron significantly lowers plasma glucose and insulin levels and

effected improvement in the serum glycemic profile (Arasteh et al.,

2010; Shirali et al., 2013).

4.1.1 | Hypoglycemic potential of saffron and its
active ingredients

Saffron extracts have potent hypoglycemic effects, making them a

primary nutraceutical for the treatment of both type 1 (insulin

dependent) and type 2 (non‐insulin dependent) diabetes (Milajerdi

et al., 2018; Shirali et al., 2013). Saffron β carotenes can induce

hypoglycemic effects via several pathways (Table 2).

Induction of insulin sensitivity and improvement of insulin

signaling

Reduction of insulin sensitivity and an increase in insulin resistance in

peripheral tissues is a central feature of diabetes (Yaribeygi, Katsiki,

Behnam, Iranpanah, & Sahebkar, 2018). The peripheral insulin‐
dependent cells (adipocytes, muscular tissues, and cardiomyocytes)

are therefore unable to take up circulating glucose and so insulin

resistance develops (Yaribeygi, Katsiki, et al., 2018). Crocin, safranal

and crocetin exert their hypoglycemic effects via induction of insulin

sensitivity in insulin‐dependent tissues (Kang et al., 2012). Kang et al.

(2012) demonstrated that saffron markedly increased peripheral

insulin sensitivity by phosphorylation of acetyl‐CoA carboxylase

(AMPK/ACC) and mitogen‐activated protein kinases, but not

PI3‐kinase/Akt. Xi, Qian, Xu, Zheng, et al. (2007) demonstrated that

TABLE 1 Beneficial effects of saffron nutraceuticals

Classes of effects Details of effects References

Saffron ingredient effects

Antioxidant Prevention of oxidative stress by potentiation of antioxidative

defenses, free radical scavenging

Yaribeygi, Mohammadi, and

Sahebkar (2018)

Antidiabetes Hypoglycemic effects by increasing insulin sensitivity, β‐cell function
and improvement in insulin signal transduction

Shirali et al. (2013) and Xi, Qian, Xu,

Zho, et al. (2007)

Memory enhancer Improvement in learning behavior, long‐term potentiation and spatial

memory

Abe and Saito (2000) and Ghadrdoost

et al. (2011)

Gene protection Protection against mutations and damage to DNA Ashrafi et al. (2015)

Sexual‐behavior potentiation Improvement in sexual behavior and enhanced gonadal function Malviya et al. (2016) and

Sadoughi (2017)

Neuroprotection Protection against neuronal damages in CNS and peripheral nerves

by inhibition of injurious pathways

Wang et al. (2015)

Cough suppressant Suppression of cough by centric pathways El‐Alfy (2017)

Antidepressant Protection against depression and improvement in mood state by

dopamine and serotonin release

Lopresti and Drummond (2014)

Anti‐inflammation Prevention of inflammatory mediator expression and inhibition of

inflammatory responses

Yaribeygi, Mohammadi, and

Sahebkar (2018)

Cardiovascular protection Protection of the cardiovascular system from atherosclerosis and

improvement of endothelial function

Hatziagapiou and Lambrou (2018)

Antitumor Suppression of malignant cells by induction of apoptosis Hoshyar and Mollaei (2017)
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crocetin therapy in diabetic rats improved insulin sensitivity by

downregulation of adiponectin, tumor necrosis factor‐α (TNF‐α) and
leptin expression in white adipocytes at both the protein and

messenger RNA (mRNA) level. They also reported that crocetin

prevented dexamethasone‐induced insulin resistance by lowering

free fatty acids and triglycerides in plasma and by downregulation of

TNF‐α (Xi, Qian, Shen, Wen, & Zhang, 2005). Crocetin may also

suppress adiponectin expression leading to increased insulin sensi-

tivity (Xi, Qian, Xu, Zhou, & Sun, 2007).

Shirali et al. (2013) evaluated insulin sensitivity in diabetic

animals by HOMA‐IR (homeostatic model assessment for insulin

resistance), finding that crocin significantly reduced glycosylated

hemoglobin (HbA1C) and improved insulin sensitivity, probably by

prevention of oxidative stress and improvement of the plasma lipid

profile. Hazman, Aksoy, and Büyükben (2016) observed that crocin

suppressed TNF‐α and interleukin‐1β (IL‐1β) levels in plasma and the

TNF‐α and interferon‐γ (IFN‐γ) levels in pancreatic tissues and

thereby improved insulin sensitivity. Dehghan et al. (2016) found that

saffron improved the plasma glycemic profile by upregulation of the

GLUT4/AMPK molecular pathway. Maeda, Kai, Ishii, Ishii, and

Akagawa (2014) suggested that safranal acts as a potent inducer of

IST by inhibition of protein tyrosine phosphatase 1B (PTP1B), which

is a negative modulator of IST via tyrosine dephosphorylation of IRs.

The active ingredients of saffron therefore exert their hypoglycemic

effects via improving IST and inducing insulin sensitivity in peripheral

tissues.

Improvement of β‐cell function
β‐Cell dysfunction is a central feature of diabetes (Fernández‐Millán

et al., 2015). Located in the islets of the pancreas, β cells are unique

as they are able to secrete insulin in response to the increases in

plasma glucose (Fernández‐Millán et al., 2015). Many pathological

mechanisms can impair the proper functioning of β cells, leading to an

insufficient insulin secretory response, the underlying cause of DM

(Keane, Cruzat, Carlessi, de Bittencourt, & Newsholme, 2015).

The evidence suggests that saffron extracts may improve β‐cell
function directly or indirectly via inhibition of pathophysiologic molecular

mechanisms responsible for the destruction of β cells (Xi et al., 2005).

Since hyperglycemia has a direct toxic effect on β cells, it may also be that

saffron extract prevents β‐cell toxicity/destruction by induction of insulin

sensitivity and lowering of blood glucose (Brownlee, 2003). Xi et al.

(2005) demonstrated that crocetin improved β‐cell function and

prevented dexamethasone‐dependent insulin resistance and hyperglyce-

mia. Elgazar, Rezq, and Bukhari (2013) reported that saffron extract

prevented deterioration in β‐cell function and induced islet regeneration,

probably via its antioxidant effect, in alloxan‐induced diabetic animals.

Ghorbanzadeh, Mohammadi, Mohaddes, Dariushnejad, and Chodari

(2017) found that crocin prevented diabetes‐induced apoptosis in

pancreatic β cells via downregulation of the p53 protein. Moreover,

saffron nutraceuticals can prevent the impairment of β cells by inhibition

of detrimental molecular mechanisms. Finally, the evidence links caspases

with β‐cell destruction and islet failure (Liadis et al., 2005). Caspases are a

family of proteins involved in various forms of cellular death, such as

TABLE 2 Hypoglycemic effects of saffron ingredients

Hypoglycemic effects of
saffron ingredients Details References

Improvement in insulin

signaling/insulin sensitivity

Induces insulin sensitivity by improvement of insulin

signaling via phosphorylation of AMPK/ACC;

induction of the GLUT4/AMPK molecular pathway,

downregulation of adiponectin and TNF‐α, lowering

of free fatty acids and triglycerides and improvement

in the plasma lipid profile, prevention of oxidative

stress, inhibition of PTP1B

Dehghan et al. (2016), Hazman et al. (2016), Kang et al.

(2012), Xi et al. (2005), Xi, Qian, Xu, Zheng, et al.

(2007), Xi, Qian, Xu, Zho, et al. (2007),

and Yaribeygi, Katsiki, et al. (2018)

Improvement in β‐cell
function

Prevention of β‐cell damage by inhibition of injurious

pathways such as oxidative stress and inflammation,

suppression of caspase‐dependent β‐cell damage,

downregulation of p53 that is involved in β‐cell
apoptosis

Brownlee (2003), Elgazar et al. (2013), Elsherbiny et al.

(2016), Ghorbanzadeh et al. (2017), Keane et al.

(2015), Liadis et al. (2005), Lv et al. (2016), and

Zhang et al. (2015)

Induction of GLUT4

expression/localization

Induction of GLUT4 translocation into the plasma

membrane by AMPK/ACC and Akt kinase pathways

as well as by insulin secretion

Du et al. (2018), Hazman et al. (2016), Maeda et al.

(2014), Shirali et al. (2013), and Yaribeygi, Katsiki,

et al. (2018)

Prevention of oxidative stress Protection against oxidative stress‐induced diabetes by

potentiation of antioxidant elements and free radical

scavenging

Hatziagapiou and Lambrou (2018), Hu et al. (2018),

Kianbakht and Hajiaghaee (2011), Maritim et al.

(2003), Yang et al. (2017), Yaribeygi, Faghihi, et al.

(2018), Yaribeygi, Mohammadi, and

Sahebkar (2018)

Suppression of inflammatory

responses

Prevention of inflammatory mediator expression that is

involved in insulin resistance

Black (2003), Navarro‐González et al. (2011), Rajaei

et al. (2013), and Wellen and Hotamisligil (2005)

Note. ACC: acetyl‐CoA carboxylase; Akt: a form of protein kinase; AMPK: AMP‐activated protein kinase; GLUT4: glucose transporter; PTP1B: protein

tyrosine phosphatase 1B; TNF‐α: tumor necrosis factor‐α.
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apoptosis, necrosis and pyroptosis (Zhang et al., 2015). Saffron extract

can ameliorate caspase activity and prevent its injurious effects

(Elsherbiny, Salama, Said, El‐Sherbiny, & Al‐Gayyar, 2016; Lv et al.,

2016). Some mediators that are involved in necrotic pathways, such as

TNF‐α, may be suppressed by saffron nutraceuticals (Du et al., 2018).

Induction of GLUT‐4 expression/localization

Saffron nutraceutical extract may improve glycemic control via an

effect on GLUT‐4 (Kang et al., 2012). Kang et al. (2012) demonstrated

that saffron extract induced hypoglycemic effects via an increase of

GLUT4 translocation into the plasma membrane via the AMPK/ACC

pathway. Saffron extracts induced AMPK signaling pathways, leading

to more GLUT‐4 translocation into the cell membrane (Dehghan et al.,

2016). Crocin and saffron extracts can also activate Akt kinase, which

may result in GLUT‐4 translocation from an intracellular pool to the

plasma membrane of insulin‐dependent tissues through IRs and PI3‐
kinase pathways (Hu et al., 2018). Saffron extracts may induce GLUT‐4
translocation into cell membranes by improving β‐cell function and

stimulating insulin secretion, a potent inducer of GLUT‐4 localization

to the cell membrane (Shirali et al., 2013).

4.1.2 | Prevention of oxidative stress

Oxidative stress is a consequence of an imbalance between free

radical species and the antioxidant defense system in favor of free

radicals (Alexiou et al., 2018; Cabezas, El‐Bachá, González & Barreto,

2012; Leszek et al., 2016; Sutachan et al., 2012; Yaribeygi, Faghihi,

Mohammadi, & Sahebkar, 2018). Oxidative stress plays a key role in

DM and its complications (Yaribeygi, Faghihi, et al., 2018). Free

radical overload can disrupt normal glucose homeostasis and cause

development of DM, as well as insulin resistance in peripheral tissues

(Maritim, Sanders, & Watkins, 2003). Improvement of the redox state

is therefore a major therapeutic goal (Yaribeygi, Faghihi, et al., 2018).

Saffron nutraceuticals are potent antioxidant agents that can prevent

oxidative damage in various tissues by scavenging free radicals or by

potentiation of the antioxidant defense elements (Yang et al., 2017;

Yaribeygi, Mohammadi, Rezaee, et al., 2018). Saffron extracts are

able to ameliorate oxidative damage leading to β‐cell dysfunction and

insulin resistance and so improve glycemic control (Kianbakht &

Hajiaghaee, 2011; Rajaei et al., 2013).

4.1.3 | Suppression of inflammatory responses

Inflammatory responses play a pivotal role in many diseases,

including DM (Wellen & Hotamisligil, 2005). Inflammation is clearly

linked to β‐cell dysfunction and islet failure, insulin resistance and

DM development (Black, 2003; Wellen & Hotamisligil, 2005). The

pathophysiology of DM is characterized by activation of inflamma-

tory pathways and upregulation of inflammatory mediators such as

TNF‐α and interleukin‐6 (IL‐6; Navarro‐González, Mora‐Fernández,
De Fuentes, & García‐Pérez, 2011). Saffron extracts have potent

anti‐inflammatory potential and can inhibit procytokines and

inflammatory mediator expression at the mRNA and protein levels

and prevent inflammatory responses in various tissues (Nam et al.,

2010; Poma, Fontecchio, Carlucci, & Chichiriccò, 2012). Saffron

prevents inflammation‐induced insulin resistance by downregulation

of the inflammatory mediators involved in insulin resistance and DM

development (Samarghandian et al., 2016; Yaribeygi, Mohammadi,

Rezaee, et al., 2018). Therefore, the active ingredients in saffron can

improve glycemic control by inhibition of inflammation‐induced
insulin resistance in peripheral tissues and also by prevention of

inflammation dependent β‐cell damage (Samarghandian et al., 2016).

Clinical trial on the hypoglycemic effects of saffron

In addition to experimental studies, there is recent evidence

regarding the hypoglycemic potential of saffron and its active

ingredients in humans (Kermani et al., 2017; Milajerdi et al., 2018;

Sepahi et al., 2018). Milajerdi et al. (2018) performed a randomized

triple blind study in 54 type 2 diabetic patients and found that eight

weeks of daily saffron consumption markedly reduced fasting blood

glucose in these subjects. Sepahi et al. (2018) designed a placebo‐
controlled randomized clinical trial and found that daily administra-

tion of 15mg of oral crocin markedly reduced HbA1C in diabetic

patients compared to control placebo groups. Moreover, Milajerdi

et al. (2016), in a triple‐blind clinical trial study demonstrated that

15mg of saffron for 8 weeks markedly reduced fasting and 2 hr

postprandial blood glucose in type 2 diabetic patients. These studies

provide clear experimental data supporting the hypoglycemic effects

of saffron and its extracts. However, more clinical trials are still

required. In all these trials, saffron or crocin were safe and well

tolerated, with no serious adverse effects reported.

5 | CONCLUSION

Saffron has potent hypoglycemic effects. This nutraceutical can aid

maintenance of glycemic control by improving IST, thus promoting

insulin sensitivity. Saffron ingredients can improve β‐cell function by

inhibition of damaging pathways involved in β‐cell failure that lead to

insufficient insulin release. Saffron can also induce GLUT‐4 translo-

cation into the plasma membrane from the intracellular pool and so

increase glucose uptake by insulin‐dependent tissues. Saffron

increases GLUT‐4 localization in the plasma membrane via several

pathways such as AMPK/ACC and Akt kinase activation, as well as by

induction of insulin secretion. Moreover, saffron extracts improve

glycemic control by suppression of the pathophysiologic pathways

involved in insulin resistance, such as oxidative stress and inflamma-

tion. Extant evidence suggests that saffron is a safe and efficacious

natural product that might serve as an adjunct to routine antidiabetic

medications, and also as a dietary supplement to mitigate insulin

resistance in prediabetic individuals.
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