(2018) Adsorption of cadmium from aqueous solutions by novel Fe3O4- newly isolated Actinomucor sp. bio-nanoadsorbent: functional group study. Artificial Cells Nanomedicine and Biotechnology. S1092-S1101. ISSN 2169-1401
Text
Adsorption of cadmium from aqueous solutions by novel Fe3O4- newly isolated Actinomucor sp. bio-nanoadsorbent functional group study.pdf Download (2MB) |
Abstract
A novel bio-nanocomposite was prepared by the combination of fungal biomass and Fe3O4 magnetic nanoparticles. The result of XRD and EDAX analysis indicated that Fe3O4 Actinomucor sp. bio-nanoadsorbent was prepared. Our experiments showed that the adsorption kinetics and isotherm of this material comply with the pseudo-second-order and the Langmuir models, respectively. The maximum adsorption capacity (q(max)) of this novel bio-nanoadsorbent was obtained as 29.49 mg/g. The thermodynamic analysis revealed that the adsorption of Cd2+ is spontaneous and exothermic. The optimum temperature, initial concentration, contact time and pH for adsorption system of cadmium were about 45 degrees C, 400 mg/L, 120 min and 7, respectively. Pretreatment of adsorbent by NaOH and SDS significantly increased cadmium adsorption capacity. SEM images showed that Fe3O4 nanoparticles were immobilized successfully on the fungus cell surface. Contribution of the carboxyl, hydroxyl, amine and Fe-O functional groups of the bio-nanoadsorbent in the binding to cadmium ions was revealed by FTIR analysis. Results from regeneration studies indicated reusability of the adsorbent up to 91. According to experimental results, it could be claimed that bio-nanocomposite of Fe3O4- Actinomucor sp. is a novel efficient adsorbent for removal of metal ions from aqueous solutions, and hence it has potential to be used in the environmental pollution cleanup programs.
Item Type: | Article |
---|---|
Keywords: | Actinomucor sp. Fe3O4 bio-nanocomposite Cd2+ adsorption cadmium heavy-metal removal waste-water oxide nanoparticles composite adsorbent biosorption pb(ii) nanocomposites lead(ii) kinetics recovery Biotechnology & Applied Microbiology Engineering Materials Science |
Divisions: | |
Page Range: | S1092-S1101 |
Journal or Publication Title: | Artificial Cells Nanomedicine and Biotechnology |
Journal Index: | ISI |
Volume: | 46 |
Identification Number: | https://doi.org/10.1080/21691401.2018.1533841 |
ISSN: | 2169-1401 |
Depositing User: | مهندس مهدی شریفی |
URI: | http://eprints.bmsu.ac.ir/id/eprint/3923 |
Actions (login required)
View Item |