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Abstract In order to achieve better antibacterial water insoluble nanoparticles (Nanoparticles) of

ZnO and ZnO–Al2O3 were studied. ZnO–Al2O3 mixed oxide nanoparticles were produced from a

solution containing Zn(AC)2�2H2O and AlCl3 by Solvothermal method. The calcination process

of the ZnO–Al2O3 composite nanoparticles brought forth polycrystalline one phase ZnO–Al2O3

nanoparticles of 30–50 nm in diameters. ZnO and ZnO–Al2O3 were crystallized into würtzite and

rock salt structures, respectively. The structural properties of this sample were analyzed by XRD

and compared with bulk case of these samples. Antibacterial effectiveness of the ZnO and ZnO–

Al2O3 nanoparticles were tested against general Escherichia coli (E. coli ATCC 25922) and

E. coli O157:H7 by measuring the growth through optical density and digital counting of live–dead

cells. Minimum inhibitory concentration values against four representative bacteria along with

E. coli O157:H7 were also obtained.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Solvothermal reactions are widely used for the synthesis of sol-
ids such as porous, magnetic or electronic compounds as well

as catalysts and pigments. The discovery or optimization of
new compounds is closely connected with the exploration of
the parameter space, which normally comprises of composi-
tional and process parameters. These can range from molar ra-

tios of the starting materials or their order of addition, the pH
of the starting mixture and the solvent employed in the synthe-
sis to the reaction time and temperature. While investigations

studying one parameter at a time are straightforward, the
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Scheme 1 Shows the reaction between Zn(AC)2�2H2O, AlCl3
and sodium hydroxide for the formation of ZnO and ZnO–Al2O3

nanoparticles.

Figure 1 X-ray powder diffraction pattern of (a) ZnO nanopar-

ticles and (b) ZnO–Al2O3 nanoparticles.
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simultaneous study of many reaction variables dramatically

raises the number of necessary reactions. The serial investiga-
tion of such large parameter spaces is impractical and most of-
ten infeasible, and high-throughput methods are a more
appropriate way (Aslani et al., 2010a,b; Karimi et al., 2010;

Aslani, 2011; Aslani and Oroojpour, 2011).
In recent years, controllable synthesis and ordered assembly

of nanocrystalline materials is one of the most interesting re-

search areas due to their potential applications in optical and
electronic fields, biological labeling and catalysis (Chen et al.,
2005; Liu et al., 2001). Their unique properties depend on both

the size and the morphology of nanocrystalline materials. A
variety of methods have been developed to synthesize nano-
crystalline materials with different morphologies. Among

them, the traditional method of fabrication of chalcogenide
semiconductor is solid synthesis at high temperature
(P500 �C), i.e., VLS (vapor–liquid–solid growth), CVT (chem-
ical vapor transport growth) and thermolysis of single source.

Nowadays, more attention has been paid to solid synthesis at
low temperature, such as electrochemistry, supersonic method,
hydrothermal and solvothermal processes. The hydro-solvo-

thermal method is direct, fast and easy than other methods
for synthesis of nanomaterials (Aslani et al., 2008, 2009; Aslani
and Morsali, 2009). Metal oxide nanoparticles are receiving

increasing attention for a large variety of applications. Tita-
nium dioxide and zinc oxide nanoparticles are included in
toothpaste, beauty products, sunscreens and textiles. Alumi-
num oxide having good dielectric and abrasive properties is

widely used as an abrasive agent or insulator. The concerns
of metal oxide nanoparticles are that because of their chemis-
try, size, and being not biodegradable, they will rapidly distrib-

ute throughout the environment with unknown consequences.
Until now little is known about the potential toxicity of metal
oxide Nanoparticles in soil and water. Given the well-known

toxicity of the ionic forms of many metals, the solubility of me-
tal oxide nanoparticles may require particular attention, and it
is important to distinguish effects of Nanoparticles from dis-

solved metals when assessing the toxicity of metal oxide
nanoparticles.

Published studies on the eco toxicity of metal oxide nano-
particles to bacterial species are limited, even though their bac-

tericidal properties have been reported in the biomedical
literature (Fu et al., 2005; Duran et al., 2007). One might there-
fore expect some of these materials to be toxic to microbes in

the environment. Zinc oxide (ZnO) nanoparticles seem to dis-
rupt the gram-negative cell membrane structure in Escherichia
coli (Brayner et al., 2006), and it is proposed that nanoparticles

with a positive charge such as cerium oxide could bind the
gram-negative cell membrane by electrostatic attraction (Thill
et al., 2006). Clearly, the intimate relationship between the

physicochemistry of the medium and membrane biology of
the microbe is emerging as a key factor in nanoparticles’ tox-
icity to microorganisms. On the other hand the antibacterial
properties of some metal oxides have been known for thou-

sands of years and using these properties the ancient Greeks
cooked. The adage born with a silver spoon in his mouth, re-
ferred to more than just wealth. Currently, the investigation of

this phenomenon has gained importance due to the increase of
bacterial resistance to antibiotics. E. coli inhabit the intestines
of humans and other animals. Although most strains of E. coli

are not pathogenic. E. coli O157:H7 produces Shiga-like toxin
and causes diarrhea and abdominal cramps (Zhu et al., 2002)
and is considered as the most pathogenic strain of E. coli.

The outbreaks of E. coli O157:H7 have been associated with
the consumption of foods of animal origin, such as under-
cooked beef (Ochoa and Harrington, 2005), improperly pas-
teurized milk (Zhao et al., 2009) or contaminated water

(Miles et al., 2009). These bacteria are estimated to cause thou-
sands of food borne illnesses and hundreds of hospitalizations
and deaths worldwide each year (Muniesa et al., 2006). It is
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very important to monitor pathogenic E. coli strains and stop

their growth by simple and novel means.
Therefore, in developing the route of synthesis, an empha-

sis was made to control the size of ZnO and ZnO–Al2O3

nanoparticles. ZnO and ZnO–Al2O3 at bulk size alone in solu-

tion easily aggregate resulting in deterioration of their chem-
ical properties and a loss of their antibacterial properties.
To solve these problems, we used ZnO and ZnO–Al2O3 at

nano size. These nanoparticles provide high surface area for
surface functionalization, give excellent mechanical strength
for supporting other materials, thermal stability and are of

low cost.

2. Experimental

ZnO and ZnO–Al2O3 nanoparticles were synthesized by meth-
ods as reported in references (Aslani et al., 2010a, b; Karimi

et al., 2010; Aslani, 2011; Aslani and Oroojpour, 2011). Then
XRD structural studies of them were compared to these refer-
ences. This study show that our synthesized materials are at
nano-size. Therefore the synthesized nanoparticles of ZnO

and ZnO–Al2O3 were used for their antibacterial properties
(Maneerung et al., 2008; Aslani et al., 2011a, b).
Figure 2 Growth curve of E. coli ATCC 25922: (a) in the presence o

with their positive control (only bacteria), respectively and ZnO nanopa

nanoparticles at concentrations of 100 and 10 lg/ml, with only bacteria

for E. coli O157:H7: (c) in the presence of ZnO nanoparticles at conce

the presence of ZnO–Al2O3 nanoparticles at concentration of 100 lg/
2.1. Bacterial growth-inhibiting effect based on LB agar plating

The growth-inhibiting effects of ZnO and ZnO–Al2O3 nano-
particles were further confirmed by plating on LB agar plates

after 24 h of growth at 37 �C in LB broth. The serial dilutions
of these mixtures were made in PBS up to 10�9 concentration
and then plated on LB agar plates.

2.2. Bacterial growth-inhibiting effect in LB broth using

turbidity

E. coli strains were cultured on Luria Bertani (LB) agar plates
for 18 h at 37 �C before use. Differing concentrations of ZnO
and ZnO–Al2O3 nanoparticles were prepared in sterilized LB

medium in a final volume of 10 ml. The growth of bacteria
was monitored with and without ZnO at concentrations of
0.085, 0.85, 8.5, 17, 34, and 42.5 lg/ml, and ZnO–Al2O3 nano-

particles at 0.1, 1, 10, and 100 lg/ml. A single colony of E. coli
was used for inoculating the LB medium containing the nano-
particles as well as a positive control containing only bacteria

without ZnO and ZnO–Al2O3 nanoparticles. Aliquots were ta-
ken every hour up to 9 h and then after 24 h for measurement
of the optical density at 620 nm. Samples containing only bac-
f ZnO nanoparticles at concentrations of 1.0, 10.0 and 50.0 lg/ml

rticles only as a negative control, (b) in the presence of ZnO–Al2O3

and only ZnO–Al2O3 nanoparticles respectively. The growth curve

ntration of 50.0 lg/ml, only bacteria, and only nanoparticles (d) in

ml, only bacteria, and only ZnO–Al2O3 nanoparticles.



Figure 3 Colonies count of E. coli ATCC 25922 expressed as a

percentage of the number of colonies grown on silver free LB agar

plates, (a) ZnO–Al2O3 nanoparticles at 0.1, 1, 10 and 100 lg/ml,

(b) colloidal ZnO nanoparticles at 0.1, 1.0, 10.0 and 50.0 lg/ml.
Figure 4 Bar graph of live and dead (a) E. coli ATCC 25922 (b)

E. coli O157:H7 in the presence and absence of ZnO nanoparticles,

where bacterial cell counts are expressed as a function of

percentage per ml.

Table 1 MIC results of antibacterial property of ZnO and

ZnO–Al2O3 nanoparticles (lg/mL).

Bacteria ZnO–Al2O3

nanoparticles

ZnO

nanoparticles
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teria were plated as positive controls. The LB broth containing
E. coli and nanoparticles was diluted based on the growth that
was observed though optical density readings. The plates were

incubated at 37 �C for 24 h followed by counting the number
of colonies on the plate and calculating the increase in colony
forming units (cfu)/ml according to following formula (Manee-

rung et al., 2008).

Viable count at0 h� Viable count at 24 h

Viable count at 0 h
� 100 ¼ X
(lg/mL) (lg/mL)

E. coli ATCC 25922 150 50

E. coli O157:H7 150 50

Pseudomonas aeruginosa ATCC 27853 150 50

Salmonella enterica ATCC 19585 150 58

Bacillus cereus 175 58
2.3. Bactericidal effect using live–dead cell staining

Experiments were carried out in the presence and absence of
silver Nanoparticles to determine the cell viability of E. coli

and E. coli O157:H7 bacteria by using the backlight bacterial
viability kit. E. coli inoculated LB broth with and without
ZnO–Al2O3 or ZnO nanoparticles were incubated at 37 �C
for 24 h. The samples were centrifuged at 3500�rcf for
10 min in order to pellet the cells and, rinsed 3 times with
1 ml sterile 0.85% KCl solution. After the final rinse, the cells

were re-suspended in 1 ml of 0.85% KCl solution and 1 ll of
both reagents A and B from the kit was added. The suspension
was incubated at RT for 15 min. followed by filtration onto a

25 mm black polycarbonate filter, in order to concentrate the
cells. The filter was then placed onto glass microscope slides
with cover slips and visualized under a fluorescent microscope
using red and green filters for analysis. The dead cells were
counted using a red filter while the live cells were counted using

the green filter.

3. Results and discussions

3.1. Structural study

The reaction between Zn(AC)2�2H2O and AlCl3 and sodium
hydroxide to form ZnO and ZnO–Al2O3 nanoparticles has
been shown in Scheme 1.



Table 2 MIC results of antibacterial property of ZnO and

ZnO–Al2O3 at bulk size (mg/mL).

Bacteria ZnO powders

at bulk size

(mg/mL)

ZnO/Al2O3

powders at

bulk size (mg/mL)

E. coli ATCC 25922 512 250

E. coli O157:H7 512 250

Pseudomonas aeruginosa

ATCC 27853

512 250

Salmonella enterica

ATCC 19585

512 275

Bacillus cereus 575 275
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In the XRD spectra of ZnO and ZnO–Al2O3 nanoparticles

we can observe the formation of well crystalline hexagonal
structure. On the other hand XRD spectra show that there
was no other phase corresponding to Al2O3. Sharp diffraction

peaks shown in Fig. 1a and b indicate the good crystalline
structure of ZnO and ZnO–Al2O3 nanoparticles. No character-
istic peak related to any impurity was observed. The broaden-

ing of the peaks indicated that the particles were of nanometer
scale.

3.2. Antibacterial studies

In order to test the antibacterial effectiveness of these nanopar-
ticles against general E. coli and E. coli O157:H7 the optical

density (OD) was measured in LB broth in the presence and
absence of nanoparticles. A level of 10.0 or 50.0 lg/ml of
ZnO nanoparticles totally inhibited the growth of the general

strain of E. coli throughout the 24 h period of incubation
(Fig. 2a). Limited inhibition was observed at 10.0 lg/ml. The
ZnO–Al2O3 nanoparticles at 10 lg/ml inhibited the growth

of the general E. coli strain up to 6 h while 100 lg/ml was effec-
tive throughout the 24 h incubation and totally prevented
growth (Fig. 2b). As is noted 100 lg/ml ZnO–Al2O3 nanopar-
ticles’ control did result in a high initial turbidity but there was

no apparent change over time indicating inhibition of bacterial
growth. In tests against E. coli O157:H7, the higher concentra-
tion of ZnO nanoparticles (50.0 lg/ml) and ZnO–Al2O3 nano-

particles (100 lg/ml) also inhibited the growth up to 24 h
(Fig. 2c and d, respectively).

Plate counts were also used to monitor growth of the gen-

eral strain of E. coli at the end of the 24 h incubation. The
inhibitory effects, observed using turbidity were confirmed
using plate counts. It should be pointed out that the samples
with nanoparticles were diluted prior to plating; however,

the nanoparticles were still present in the plates and thus likely
influenced growth on the plates. Concentrations of 5 and
10 lg/ml of ZnO–Al2O3 and 10.0 lg/ml ZnO nanoparticles re-

duced growth of E. coli on the plates, but no growth was ob-
served at 100 lg/ml of ZnO–Al2O3 and at 50.0 lg/ml of ZnO
nanoparticles (Fig. 3a and b, respectively). These results con-

firm that the synthesized ZnO–Al2O3 nanoparticles have anti-
bacterial effectiveness similar to ZnO nanoparticles. The
digital counting of live vs. dead bacterial cells was expressed

as the function of percentage and results are the mean of some
images. In the presence of 100 lg/ml of ZnO–Al2O3 nanopar-
ticles 82% of the general strain were killed whereas 72% of
E. coli O157:H7 were killed (Fig. 4a and b). 10.0 lg/ml ZnO
nanoparticles showed similar results with 78% death of the

general strain and 68% death of E. coli O157:H7.
For demonstrating the antibacterial activity of ZnO and

ZnO/Al2O3 powders at bulk size, E. coli and E. coli O157:H7
were selected as the bacteria, respectively. For bulk ZnO and

bulk ZnO/Al2O3 powders, MIC values obtained from the
broth dilution test for E. coli and E. coli O157:H7 aurous were
512 and 250 mg/mL, respectively and depended on the size of

ZnO and ZnO/Al2O3 powders. However, these values were not
better than ZnO and ZnO/Al2O3 nanopowders. Because there
is no recommended standard materials for testing the inhibi-

tory activities of inorganic antibacterial agents. But the use
of nanoparticles of ZnO and ZnO/Al2O3 gives better results
for antibacterial activity of these compounds. On the other

hand the concentration of ZnO and ZnO/Al2O3 powders that
were used in this work for comparison of the size effect on
antibacterial activity indicates that the nanoparticles of ZnO
and ZnO/Al2O3 powders give good result from ZnO and

ZnO/Al2O3 powders at bulk size (see Table. 2.).
4. Conclusion

In conclusion, we could develop a simple low-temperature
solvothermal method to synthesize single crystalline, hexago-

nal ZnO and ZnO–Al2O3 nanoparticles with different ratio.
Though several low-temperature chemical or solvothermal
syntheses of ZnO and ZnO–Al2O3 nanoparticles have been re-

ported our low-temperature synthesis method allows synthe-
sizing ZnO and ZnO–Al2O3 nanostructures of several
morphologies in a controlled manner.

The OD graph and agar plate readings of well dispersed

ZnO nanoparticles at 50.0 lg/ml and ZnO–Al2O3 nanoparti-
cles at 100 lg/ml show almost similar antibacterial effective-
ness in LB broth against E. coli ATCC 25922 and E. coli

O157:H7. The mechanism of antibacterial property of ZnO
nanoparticles has been well established by free-radical genera-
tion from ZnO nanoparticles using electron spin resonance

spectroscopy. In the presence of 10 lg/ml of ZnO–Al2O3 nano-
particles, growth of both E. coli ATCC 25922 and E. coli
O157:H7 was inhibited, and at 100 lg/ml, the bacteria did

not grow even after 24 h. At ZnO–Al2O3 nanoparticles concen-
tration of 100 lg/ml 82% of the general E. coli and 72% of
E. coli O157H7 were killed.

Further, antibacterial properties of ZnO–Al2O3 and ZnO

nanoparticles were shown with both Gram negative and posi-
tive bacteria. MIC values show that 150 lg/ml ZnO–Al2O3

nanoparticles and 60 lg/ml ZnO nanoparticles were sufficient

for Gram negative bacteria (E. coli ATCC25922, E. coli
O157:H7, Pseudomonas aeruginosa ATCC27853, Salmonella
enterica ATCC19585 (50.0 lg/ml; ZnO nanoparticles) while,

170 lg/ml ZnO–Al2O3 nanoparticles and 50.0 lg/ml ZnO
nanoparticles were required for the Gram positive bacteria
(Bacillus cereus) (Table. 1). This difference could be due to

the difference in bacterial concentration as well as the type
of strain used.
Acknowledgements

Supporting of this investigation by Jundi Shapur University of

Technology (Dezful, Islamic Republic of Iran), Baqiyatallah



Antibacterial activity against Escherichia coli S235
University Medical of Science (Tehran, Islamic Republic of

Iran) and Kimya Javid Company, Gitipasand industrial
company, (Isfahan. Islamic Republic of Iran) is gratefully
acknowledged. This work proffer to ‘‘Dr. Masoud

Alimohammadi, Dr. Majid Shariyari, Mostafa Ahmadi
Roshan, Dariush Razaeinejad, Reza Ghashghaei and
Dr. Hassan Tehrani Moghaddam’’.

References

Aslani, A., Shamili, A.R.B., Barzegar, S., 2010a. Solvothermal

synthesis, characterization and optical properties of ZnO and

ZnO–Al2O3 mixed oxide nanoparticles.. Phys. B Phys. Condens.

Matter 405, 3585–3589.

Aslani, A., Shamili, A.R.B., Kaviani, K., 2010b. Sonochemical

synthesis, characterization and optical analysis of some metal

oxide nanoparticles (MO-NP; M=Ni, Zn and Mn).. Phys. B Phys.

Condens. Matter 405, 3972–3976.

Karimi, R.R., Shamili, A.R.B., Aslani, A., Kaviani, K., 2010.

Sonochemical synthesis, characterization and thermal and optical

analysis of CuO nanoparticles.. Phys. B Phys. Condens. Matter

405, 3096–3100.

Aslani, A., 2011. Controlling the morphology and size of CuO

nanostructures with synthesis by solvo/hydrothermal method

without any additives.. Phys. B Phys. Condens. Matter 406, 150–

154.

Aslani, A., Oroojpour, V., 2011. CO gas sensing of CuO nanostruc-

tures, synthesized by an assisted solvothermal wet chemical route..

Phys. B Phys. Condens. Matter 406, 144–149.

Chen, H.F., Clarkson, B.H., Sun, K., Mansfield, J.F., 2005. Self-

assembly of synthetic hydroxyapatite nanorods into an enamel

prism-like structure.. Colloid Interf. Sci. 288, 97–103.

Liu, Y., Zhan, J., Ren, M., Tang, K., Yu, W., Qian, Y., 2001.

Hydrothermal synthesis of square thin flake CdS by using

surfactants and thiocarbohydrate.. Mater. Res. Bull. 36, 1231–

1236.

Aslani, A., Morsali, A., Yilmaz, V.T., Kazak, C. 2009. Hydrothermal

and sonochemical synthesis of a nano-sized 2D lead(II) coordina-

tion polymer: A precursor for nano-structured PbO and PbBr2.

929, 187–192.

Aslani, A., Morsali, A., 2009. Sonochemical synthesis of nano-sized

metal-organic lead(II) polymer: A precursor for the preparation of

nano-structured lead(II) iodide and lead(II) oxide.. Inorg. Chim.

Acta 362, 5012–5016.
Aslani, A., Morsali, A., Zeller, M., 2008. Nano-structures of two new

lead(II) coordination polymers: New precursors for preparation of

PbS nano-structures.. Solid State Sci. 10, 1591–1597.

Fu, G., Vary, P.S., Lin, C.T., 2005. Conformational sampling of

peptides in cellular environments.. J. Phys. Chem B. 109, 89–98.

Duran, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito,

E., 2007. Use of nanoparticles in soil-Water bioremediation

processes.. J. Biomed. Nanotech. 3, 203–208.

Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F.,

Fievet, F., 2006. Toxicological impact studies based on Escherichia

coli bacteria in ultrafine ZnO nanoparticles colloidal medium..

Nano Lett. 6, 866–870.

Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M.,

2006. Occurrence and origin of estrogenic isoflavones in Swiss river

waters.. Environ. Sci. Technol. 40, 6151–6157.

Zhu, Q., Li, L., Guo, Z., Yang, R., 2002. Identification of Shiga-like

toxin Escherichia coli isolated from children with diarrhea by

polymerase chain reaction.. Chin. Med. J. 115, 815–818.

Ochoa, M.L., Harrington, P.B., 2005. Immunomagnetic isolation of

enterohemorrhagic Escherichia coli O157:H7 from ground beef and

identification by matrix-assisted laser desorption/ionization time-

of-flight mass spectrometry and database searches.. Anal. Chem.

77, 5258–5268.

Zhao, Y., Ye, M., Chao, Q., Jia, N., Ge, Y., Shen, H., 2009.

Simultaneous detection of multifood-borne pathogenic bacteria

based on functionalized quantum dots coupled with immunomag-

netic separation in food samples.. J. Agric. Food Chem. 57, 517–524.

Miles, S.L., Gerba, C.P., Pepper, I.L., Reynolds, K.A., 2009. Point-of-

use drinking water devices for assessing microbial contamination in

finished water and distribution systems.. Environ. Sci. Technol. 43,

1425–1429.

Muniesa, M., Jofre, J., Garcia-Aljaro, C., Blanch, A.R., 2006.

Occurrence of escherichia coli O157; H7, and other enterohemor-

rhagic Escherichia coli in the environment.. Environ. Sci. Technol.

40, 7141–7149.

Maneerung, T., Tokura, S., Rujirvanit, R., 2008. Impregnation of

silver nanoparticles into bacterial cellulose for antimicrobial wound

dressing.. Carbohydr. Poly. 72, 43–51.

Aslani, A., Arefi, M.R., Babapoor, A., Amiri, A., Shuraki, K.B.,

2011a. Solvothermal synthesis, characterization and optical prop-

erties of ZnO, ZnO–MgO and ZnO–NiO, mixed oxide nanopar-

ticles.. Appl. Surf. Sci. 257, 4885–4889.

Aslani, A., Oroojpour, V., Fallahi, M., 2011b. Sonochemical synthesis,

size controlling and gas sensing properties of NiO nanoparticles..

Appl. Surf. Sci. 257, 4056–4061.


	Antibacterial activity against Escherichia coli  and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles
	1 Introduction
	2 Experimental
	2.1 Bacterial growth-inhibiting effect based on LB agar plating
	2.2 Bacterial growth-inhibiting effect in LB broth using turbidity
	2.3 Bactericidal effect using live–dead cell staining

	3 Results and discussions
	3.1 Structural study
	3.2 Antibacterial studies

	4 Conclusion
	Acknowledgements
	References


