Published online 2016 June 12.

Review Article

Maternal Inactive Hepatitis B Status and Birth-Outcomes: A Systematic Review and Meta-Analysis

Elham Ebrahimi,^{1,*} Afsaneh Keramat,¹ Masud Yunesian,² Seyed-Moayed Alavian,³ Ahmad Khosravi,⁴ Ali

Montazeri,⁵ and Mehrandokht Abedini⁶

¹PhD Student in Reproductive Health, Department of Reproductive Health, Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, IR Iran

²Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran

³Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran

⁴MSc of Epidemiology, Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, IR Iran

⁵Mental Health Research Group, Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, IR Iran ⁶Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IR Iran

Corresponding author: Elham Ebrahimi, Department of Reproductive Health, Shahroud University of Medical Sciences, Shahroud, IR Iran. Tel: +98-2333395054, E-mail: ebrahimi 308@vahoo.com

Received 2015 July 07; Revised 2015 August 04; Accepted 2015 December 01.

Abstract

Context: Hepatitis is a term used to describe any type of hepatitis inflammation. Screening for the virus antigen during pregnancy is mandatory in some parts of the world and is recommended in others. so that, most women are aware of and understand the disease if they have it when they are pregnant. Thus, the major concerns of these women are both the virus transmission to the fetus and the effects of hepatitis B on pregnancy outcome.

Evidence Acquisition: According to a specific protocol, we searched in the Pub med, Scopus, ISI web of science from 1990 to February 2015 to find the original articles, which investigated the hepatitis B effects in pregnant women with normal singleton pregnancy who were previously diagnosed with inactive CHB or were incidentally found to be HBsAg positive in routine antenatal blood test. We included any cohort, case control and cross sectional studies if they had a healthy control group and reported one or more considered maternal or prinatal outcomes in pregnant women. Meta-analysis was performed with Review manager 5.4 and Stata 11 software. We assessed the effect size that was pooled odds ratio (OR) and 95% confidence intervals (CIs) using the random effects model. We explored statistical heterogeneity using the chi-squared (Chi2), I2 and tau-squared (Tau2) statistical tests.

Results: From a total of 156 identified studies, 56 studies were chosen for a detailed review, and 18 studies which met the inclusion and exclusion criteria were included in the meta analysis. Among the included studies, the outcomes were small for gestational age (SGA) large for gestational age (LGA), intra uterine growth restriction (IUGR), fetal distress, fifth minutes apgar score, first minute Apgar score, low birth weight (LBW) and Fetal Macrosomia.

Conclusions: In this study, hepatitis B had a cause effect on LGA and fetal Macrosomia. Among the other considered adverse pregnancy outcomes; it didn't have any significant effect.

Keywords: Hepatitis B, Neonatal Outcome, Prenatal Outcome

1. Context

Hepatitis is a term used to describe any type of hepatitis inflammation (1). Various factors such as hepatitis viruses, medicines, toxins, alcohol, etc. can lead to hepatitis. Among these, viral hepatitis is one of the main causes of premature death in humans. Babies who are born to infected mothers, intravenous drug users, persons with multiple sexual partners, frequent recipients of blood and blood products, dialysis patients and health personnel are at greater risk. Among viral hepatitis, hepatitis B has become a global problem (2). Despite the progress that has occurred in antiretroviral therapy, the number of people who die due to chronic hepatitis B infection and the number of cancer cases associated with hepatitis B, are increasing (3). It is estimated that about 2 billion people worldwide have serologic evidence of hepatitis B, of which 240 million are chronic carriers and one of which dies due to cirrhosis or hepatocellular carcinoma each year (2). The prevalence of hepatitis B carriers in the world is different, and the difference in the rate of carriers of the disease indifferent parts of the world is mainly related to age. A patient's age has an inverse relation to the amount of chronic disease so that disease progression from acute hepatitis B infection to chronic infection in the neonatal period is

Copyright © 2016, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the SID in original work is properly cited. about 90% (3). In the endemic areas, many adults are infected at birth and the mother-to-child transmission is the dominant method of transmission (4). The virus antigen screening during pregnancy is mandatory in some parts of the world and is recommended in others. so that, most women are aware of and understand the disease if they have it when they are pregnant. Thus, the major concerns of these women are both the virus transmission to the fetus and the effects of hepatitis B on pregnancy outcome (3). Injection of immunoglobulin (HBIG) and the hepatitis B vaccine has been very effective in the prevention of vertical transmission, but there is a little information about the probable hepatitis B effects on newborn outcomes. It was generally accepted that acute or chronic HBV infection did not affect gestation or pregnancy outcome (5, 6). But recent reports, although conflicting, challenge this belief (7). Some studies have suggested a possible effect of hepatitis B on low birth weight, premature rupture of membranes, premature birth, stillbirth, spontaneous abortion and fetal abnormalities (8-15). Since awareness of hepatitis B effects on pregnancy outcomes is important for both patients and health care providers and the study results are controversial, we decided to do this study.

1.2. Objectives

We aimed to reply to this question: Is maternal inactive hepatitis B status associated with adverse pregnancy outcomes such as small for gestational age (SGA), large for gestational age (LGA), fetal distress, apgar score (first and fifth minutes Apgar score if it was under 7, intra -Uterine growth restriction (IUGR), low birth weight (LBW), or fetal Macrosomia?

2. Evidence Acquisition

2.1. Search Strategy

Search strategy was a systematic review which led to a meta-analysis. We searched in the Google scholar, Pub med, Scopus, ISI web of science from 1990 to February 2015. Following the initial screening of titles and abstracts retrieved from the electronic sources, references identified as potentially relevant were examined to find the three key journals. Also, electronic literature searches were supplemented by searching the grey literature (e.g., conference abstracts, thesis, and the result of technical reports) and scanning the reference lists of included studies and relevant systematic reviews. We applied a free keyword or mesh word searching with the following terms: hepatitis B, hepatitis B surface antigen, HbsAg, chronic hepatitis B, CHB, pregnancy outcome, prenatal outcome, prinatal outcome, obstetric outcome, pregnancy adverse effect, neonatal outcome, newborn outcome, small for gestational age

2.2. Criteria for Study Inclusion and Exclusion

We included three types of studies (cohort, case control and cross sectional studies).the inclusion criteria for these studies were: 1, having a healthy control group; 2, reporting one or more considered maternal or birth outcomes.

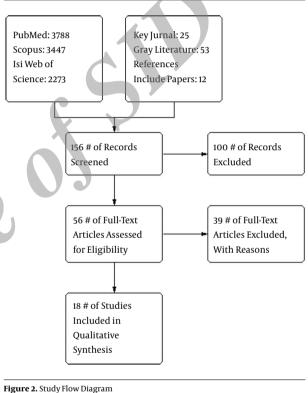
Patients meeting the following criteria were included: 1, pregnant women who were previously diagnosed with inactive CHB or were incidentally found to be HBsAg positive in routine antenatal blood test; 2, HbsAg+> 6 months HBeAg; 3, pregnant women with normal singleton pregnancy with no history of disease or medication consumption such as lamivudine, zidovodine etc.

Studies were excluded if a, there was no control group of natural conception; b, obstetric and birth outcomes were not reported; c, the study subjects of primary articles didn't have normal singleton pregnancy, or were addicted; d, super infection with hepatitis A, C, D or E virus was present.

2.3. Data Extraction and Quality Assessment

Two reviewers independently selected the studies and extracted data and outcomes according to inclusion and exclusion criteria (EE AND AK). Title and abstract of the retrieved studies were screened to decide which studies met the inclusion criteria of the meta-analysis. Then, the full texts of the eligible studies were reviewed and the necessary data were extracted and entered into an electronic datasheet. The authors were not blinded to the names of the trials' authors, journals, or results. Any disagreements were resolved through discussion among the authors until consensus was reached. Excluded trials were listed with the reasons for exclusion. If in the primary studies some data were obscured, we sent an email to the author or authors requesting an explanation. Seven items of STROBE checklist were used to assess the risk of bias in the included studies (16). The studies with at most one unclear or inadequate quality component were considered to be studies with low-risk of bias, otherwise as high-risk.

2.4. Methodological Quality Assessment of the Included Studies


For quality assessment, we used the modified version of STROBE (17) which includes seven items of STROBE checklist (setting, participation, variables, bias, limitation and interpretation). There were eight low-risk studies and ten high-risk studies (5, 17-25) among the included studies (Figure 1).

	Study Design	Setting	Participation	Variables	bias	limitation	interpretation	3.1. Sear
Azar Aghamohammadi 2011	+	+	+	+	+	+	+	The Figure 2
Dh-chuan kong2014	+	+		+	•	•	+	From
Elefsiniosl.S2013	+	Ŧ	•	+	•	•	+	chosen
KA U TESE 2005	+	+	Ŧ	+	+	+	+	inclusio analysis
laure E 2011	+	+	Ŧ	+		+	+	of the in
LERT-AMORNPONG2007	+	+	Ŧ	+	+	+	+	1
lu Yongping2012	+	+	+	+	•	•	+	1
Mak shui-lam2013	+	÷	Ŧ	Ŧ		Ŧ	+	PubMe Scopus
M MOGA2013	+	+	+	+	•	•	+	Isi Web
Reddick 2011		+	•	+	•	Ŧ	+	Science
SHELL-FEAN WONG1999	+	+		Ŧ	+	•	+	
SIMON LOBSTEIN2010	+	•	Ŧ	+	•	+	+	
SIRINART 2014	+	Ŧ	Ŧ	Ŧ	Ŧ	+	+	
Soraya Saleh-gargari2009	+	+	+	+		+	+	
TERANCE T LAO2007	•	+	Ŧ	+	•	•	+	
TT.LAO2012	+	+	+	+	+		+	
william W.K.TO2003	+	+	+	+	•	•	+	
Yang H 2002	+	+	+	Ŧ		•	Ŧ	
	L	1	<u> </u>			J	U	1
Figure 1. Risk of Bias Summary: Rev Item for Each Included Study	view Au	thors'	Judgn	nents A	bout H	ach Ri	isk of B	lias
2.5. Statistical Analysis					-			Figure 2. S

Results

sults of the literature search are summarized in

a total of 156 identified studies, 56 studies were r a detailed review, and 18 studies which met the and exclusion criteria were included in the meta Among the included studies, the characteristics luded studies are shown in Table 1.

In this study, we used chi-squared (Chi2) test, I2 and tau-squared (Tau2) statistic (26, 27), Begg's and the Egger's tests to statistical heterogeneity, inconsistency across studies, the between-study variance, and publication bias, respectively. The significance level was considered 5% in all areas (P < 0.05). Review Manager 5 (28) and Statistical software Stata 11 (Stata Corp, College Station, TX, USA) were employed for data analysis. Data were analyzed and the results were reported using a random effect model (28) with 95% CI.

3.2. Meta-Analysis of Small for Gestational Age (SGA) and Chronic Hepatitis B

Among the six studies in this part, the P value was 0.43 and the corresponding I2 statistic was 0%, suggesting no variability among the studies. The pooled OR was 1.00 (95% CI, 0.93-1.07). These findings suggest there is no significant association between inactive CHB infection and SGA. The P values were P = 0.2 and P = 0.1 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 3).

Study	Study Method	Partici	pant No.	Endpoints
		Event	Control	
Aghamohammadi and Nooritajer (2011) (29)	Retrospective -case control	150	200	5 th Minutes Apgar Score
Kong et al. (2014) (30)	Case-control	72	956	First and 5 th minutes Apgar score, LBW, Macrosomia
Elefsiniotis (2013) (19)	Prospective cohort	70	1926	LBW
Tese (2005) (31)	Case control	253	253	Fetal distress, 5 th minutes Apgar score, IUGR
Connell et al. (2011) (26)	Population-based retrospective cohort	1458	1668911	SGA, fetal distress, LBW
Lert-amornpong et al. (2007)(27)	Retrospective case control study	164	162	Fetal distress, 5 th minutes Apgar score, IUGR,
LU et al. (2012)(20)	Prospective case control	188	265	LBW, Macrosomia
Moga et al. (2012)(21)	Retrospective case-control	52	111	SGA, LGA,5 th minutes Apgar score
Wong et al. (1999) (5)	Case control	824	6281	SGA, fetal distress
MAK (2013) (28)	Retrospective case control	748	8778	First and 5 th minutes Apgar score, LBW, Macrosomia
Lobstein et al. (2011) (17)	Retrospective cohort study	39	8154	Fetal distress, IUGR, Macrosomia
Reddick et al. (2011) (22)	Retrospective cohort study	91	1446	IUGR
Sirilert et al. (2014) (32)	Retrospective cohort study	1472	22331	SGA, first and 5 th minutes Apgar score, LBW, Macrosomia
Saleh-Gargari et al. (2009) (33)	Retrospective case control	450	450	Fetal distress, first and 5 th minutes Apgar score Macrosomia
Lao et al. (2007) (23)	Retrospective cohort study	6261	55817	SGA,LGA, First and 5 th minutes Apgar score, LBV Macrosomia
Lao et al. (2012) (34)	Retrospective cohort study	8636	77936	SGA, LGA, 5TH Minutes Apgar Score, LBW, Macrosomia
To et al. (2003) (24)	Retrospective case control	1340	12452	5TH minutes Apgar score
Yang et al. (2002)(25)	Case control	81	85	Fetal distress

Table 1. The Characteristics of Studies Included in the Meta Analysis

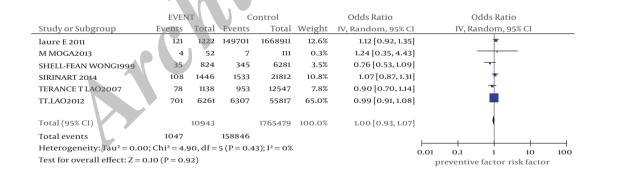


Figure 3. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Small for Gestational Age (SGA) using the Random-Effects Model

3.3. Meta-Analysis of Large for Gestational Age (LGA) and Chronic Hepatitis B

In the three studies which compared the incidence of LGA and chronic hepatitis B, the P value was 0.69 and the corresponding I2 statistic was 0%, suggesting no variability among the studies. The total OR was 1.10(95% CI, 1.02 -

1.18). These findings suggest there is probable association between CHB infection and LGA.

The P values were P = 0.6 and P = 0.4 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 4).

	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
M MOGA2013	2	52	5	111	0.2%	0.85 [0.16, 4.52]	
TERANCE T LAO2007	150	1138	1618	12547	15.3%	1.03 [0.86, 1.23]	i <u>*</u>
TT.LAO2012	858	6261	6977	55817	84.6%	1.11 [1.03, 1.20]	· –
Total (95% CI)		7451		68475	100.0%	1.10 [1.02, 1.18]	
Total events	1010		8600				
Heterogeneity: $Tau^2 = 0$	$.00; Chi^2 = 0$.75, df = 2	2(P=0.69)	9); I ² = 0%	%		
Test for overall effect: Z	= 2.60 (P = 0)	.009)					0.01 0.1 1 10 100 preventive factor risk factor

Figure 4. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Large for Gestational Age (LGA) Using the Random-Effects Model

3.4. Meta-Analysis of Fetal Distress and Chronic Hepatitis B

In this section, there was low variability according to P value (0.16) and I2 statistic (35%), and the effect size measure (OR) was 1.44 (95% CI, 1.00 - 2.08). As a statistical view, this indicates there is no significant association between inactive CHB infection and SGA. Taking a closer look at the confidence interval, we can conclude inactive chronic hepatitis can increase the chance of fetal distress. The P values were P = 0.3 and P = 0.2 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 5).

3.5. Meta-Analysis of the First Minute Apgar Score if it was Under 7, and Chronic Hepatitis B

There were five studies which compared the first minute Apgar score under 7. The P value was 0.78 and the corresponding I2 statistic was 0%, suggesting no variability among the studies.

The total OR was 0.90 (95% Cl, 0.78 - 1.04). According to these statistical tests, there was no significant association between CHB infection and first minute Apgar score under 7. The P values were P = 0.1 and P = 0.2 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 6).

3.6. Meta-analysis of the Fifth Minutes Apgar Score (If It Was Under 7) and Chronic Hepatitis B

The eleven primary studies comparing this outcome indicated low variability. The (P value was 0.13 and the corresponding I2 was 35%). The pooled OR was 1.07(95% CI, 0.82 - 1.19). These findings suggest there is no significant association between CHB infection and fifth minutes Apgar score under 7. The P values were P = 0.4 and P = 0.2 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 7).

3.7. Meta-analysis of Intra-Uterine Growth Restriction (IUGR) and Chronic Hepatitis B

The statistics showed that the four studies in this group were homogenous (The P value was 0.59 and the corresponding l2 statistic was 0%). The Meta-analysis showed that the pooled OR was 1.24 (95% CI, 0.81 - 1.88). These findings suggest there is no significant association between CHB infection and IUGR. The P values were P = 0.1 and P = 0.2 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figure 8).

3.8. Meta-Analysis of Low Birth Weight (LBW) and Chronic Hepatitis B

Among eight of the eighteen studies which compared the LBW between the chronic hepatitis B and healthy pregnant women groups, the amount of I2 (89%) and (P < 0.0001) showed severe heterogeneity. The P values were P = 0.3 and P = 0.1 for the Begg's and the Egger's tests, respectively, indicating no publication bias. The total OR indicatedno significant association between CHB infection and IUGR (Figure 9) (OR = 0.93 CI95%, 0.68 - 1.25)

We conducted two subgroup analyses based on study design and quality but I2 did not decrease in any study groups (Figures 9, 10).

3.9. Meta-Analysis of Macrosomia and Chronic Hepatitis B

According to the statistical results, the occurrence of macrosomia in the hepatitis B infected women was little more than non-infected women (OR = 1.14 CI95%: 1.02 - 1.26), there was moderate variability among the eight studies in this part (I2 = 57%, P = 0.02)

We conducted two subgroup analyses based on the quality and design of the included studies in this section. Analysis could decrease the amount of I2 only in cohort and low quality study group in each part. The P values were

	Experim	ental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
KA U TESE 2005	27	253	20	253	20.6%	1.39 [0.76, 2.55]	
laure E 2011	3	1222	6842	1668911	8.6%	0.60 [0.19, 1.86]	
LERT-AMORNPONG2007	2	164	1	162	2.2%	1.99 [0.18, 22.14]	
SHELL-FEAN WONG1999	61	824	413	6281	36.8%	1.14 [0.86, 1.50]	•
SIMON LOBSTEIN2010	0	39	36	8154	1.7%	2.82 [0.17, 46.68]	
Soraya Saleh-gargari2009	15	450	9	450	13.7%	1.69 [0.73, 3.90]	+
Yang H 2002	31	81	14	85	16.5%	3.14 [1.52, 6.51]	
Total (95% CI)		3033		1684296	100.0%	1.44 [1.00, 2.08]	•
Total events	139		7335				
Heterogeneity: $Tau^2 = 0.08$;	Chi ² = 9.20,	df = 6 (P	= 0.16); I ²	= 35%			
Test for overall effect: $Z = 1.9$	4 (P=0.05)					0	0.01 0.1 1 10 preventive factor risk factor

Figure 5. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Fetal Distress Using the Random-Effects Model

	CASE		Cont	rol		Odds Ratio)	Odds Rati	0	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 9	5% CI	
De-chuan kong2014	2	72	50	956	1.0%	0.52 [0.12, 2.17]				
Shui-Lam MAK2013	28	748	359	8778	13.4%	0.91 [0.62, 1.35]		-		
Sirinart Sirilert2014	119	1446	2061	21812	55.4%	0.86 [0.71, 1.04]				
Soraya Saleh-Gargari2009	6	450	4	450	1.3%	1.51 [0.42, 5.38]				
Terence T. Lao2007	62	1138	702	12547	28.9%	0.97 [0.74, 1.27]		+		
Total (95% CI)		3854		44543	100.0%	0.90 [0.78,1.04]		•		
Total events	217		3176							
Heterogeneity: Tau ² = 0.00;	Chi² = 1.75,	df = 4 (1)	? = 0.78);	$I^2 = 0\%$			0.01 (10	100
Test for overall effect: $Z = 1.44$	4 (P = 0.15)						0.01 (preventive	10 risk	100

Figure 6. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of the First Minute Apgar Score Under 7, Using the Random-Effects Model

P=0.2 and P=0.1 for the Begg's and the Egger's tests, respectively, indicating no publication bias (Figures 11, 12).

4. Conclusions

Hepatitis B is one of the most important issues in the field of reproductive health. Since in many countries screening for hepatitis B happens during pregnancy, the majority of mothers are concerned about the effect of hepatitis B on their baby (28).

As the results showed, with the exceptions of LGA and macrosomia, hepatitis B did not increase the risk of the other adverse outcomes. Lao et al. showed in their studies that, the probable association between hepatitis B and infant size can be because of gestational diabetes mellitus (23, 24). Primary articles also found that hepatitis B interacted in different manners with different maternal factors with the ultimate effect of increasing fetal growth even in the low risk pregnancies (34).

The studies which indicated a significant effect of hepatitis B on pregnancy outcome, agreed that the systemic inflammation caused by the hepatitis B is responsible for unwanted pregnancy complications (6, 20, 25, 26). But some of the other studies denied these effects and believed that there is a low risk of the transmission of hepatitis B through the placenta, indicating these pregnancies are the same as non-infected pregnancies (17, 23, 28, 31).

One important point in these studies involves the pos-

	CASE	1	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Azar Aghamohammadi2011	25	150	18	200	12.3%	2.02 [1.06, 3.86]	
De-chuan kong2014	1	72	10	956	1.7%	1.33 [0.17, 10.56]	
Ka Yu Tse2005	0	0	0	0		Not estimable	
Lert-amornpong2007	0	0	0	0		Not estimable	
M.MOGA2013	2	52	4	111	2.4%	1.07 [0.19, 6.04]	
Shui-Lam MAK2013	4	748	67	8778	6.2%	0.70 [0.25, 1.92]	
Sirinart Sirilert2014	50	1446	973	21812	26.3%	0.77 [0.57, 1.02]	
Soraya Saleh-Gargari2009	16	450	11	450	9.4%	1.47 [0.68, 3.21]	
T. T. Lao 22013	34	8636	234	77936	22.7%	1.31 [0.92, 1.88]	† ■-
Terence T. Lao2007	8	1138	88	12547	10.4%	1.00 [0.48, 2.07]	_ + _
William W. K. TO2003	6	1340	84	12452	8.6%	0.66[0.29,1.52]	
Total (95% CI)		14032		135242	100.0%	1.07 [0.81, 1.41]	
Total events	146		1489			4	
Heterogeneity: Tau ² = 0.05; C	hi² = 12.39, o	df = 8 (P	= 0.13); I ²	= 35%			.01 0.1 1 10 10
Test for overall effect: $Z = 0.45$	(P = 0.65)					0	protective risk

Figure 7. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of the Fifth Minutes Apgar Score Under 7, Using the Random-Effects Model

	Experime	ental	Cont	rol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
KA U TESE 2005	3	253	6	253	9.0%	0.49 [0.12, 2.00]	I	
LERT-AMORNPONG2007	1	164	1	162	2.3%	0.99 [0.06, 15.93]		
Reddick 2011	18	814	4900	296218	80.1%	1.34 [0.84, 2.15]		
SIMON LOBSTEIN2010	2	39	266	8154	8.6%	1.60 [0.38, 6.69]		
Total (95% CI)		1270	1	304787	100.0%	1.24 [0.81, 1.88]	•	
Total events	24		5173					
Heterogeneity: $Tau^2 = 0.00$; Chi ² = 1.93, o	lf = 3 (P =	= 0.59); I ² =	= 0%				
Test for overall effect: $Z = 1.0$	DO(P=0.32)	U					0.01 0.1 1 10 preventive factor risk factor	100

Figure 8. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Intra -Uterine Growth Restriction (IUGR), Using the Random-Effects Model

sible effect of the study area on the study results (5, 22). Small studies in non-endemic areas might not be able to address the adverse outcomes. Unfortunately, we did not have enough studies for investigating this hypothesis. Inaddition to this point, one of the non-effect studies implies that hepatitis B don't have any effect on placental function so that it didn't increase the rate of pregnancy adverse effects.

Looking at the results regarding SGA, IUGR, and LBW indications that hepatitis B is not associated with additional risks of the considered outcomes during pregnancy. In regards Macrosomia and LGA, results showed an increased risk of these adverse effects in the inactive CHB infection group. This conclusion should be expressed with caution because of the heterogeneity.

In the group of SGA, LGA and IUGR, I2 was 0%, which suggested no variability among the studies. But in regards to LBW and Macrosomia, there was evidence of heterogeneity (small P value of Chi2 test and large I2 statistic). The heterogeneity varied from moderate (I2 = 61% and P = 0.02 for Chi2 test) to severe (I2 = 89% and P < 0.0001 for Chi2 test). It is a fact that the Chi2, this test has low power when the sample size (the number of studies in each group) is low. On the other hand, in the situation of a low sample size, the test has high power in detecting a small amount of heterogeneity which may be clinically unimportant as was the case

in our review. Therefore, we can attribute part of the observed heterogeneity to the number of studies included in the meta-analysis. Another reason which can be proposed to explain the observed heterogeneity is the presence of remarkable difference between the studies' results. For evaluating the source of variability we conducted two sub group analyses based on the study design and quality. This analysis in the section of LBW and hepatitis B did not show decrease in the amount of I2. Moreover, the Tau2 statistic, which was used to investigate the variances between studies, was small and equal to 0.12. what may explain this paradox is that Tau2 would decrease when the between-studies variance is low and hence ,the within-studies variance is high (35, 36).

It is correct that subgroup analyses could not decrease the amount of I2 in the section of Macrosomia, but greater precision in its Forest plot showed that after quality sub grouping, the studies have have moved toward homogenization. Even if the Saleh-Gargary et al. and Simon-Lobstein et al. studies - which have a wide confidence interval -were not entered in the analysis the amount of I2 decreased in both analysis groups.(I2 = 6% in high quality group AND I2 = 27% in low quality group).

Because Apgar score is one of the primary newborn health indicators, we were curious to see the effects of hepatitis B on it. Unfortunately, the articles reported this outcome in different ways. We sent a lot of messages to the studies' author but it didn't have any benefit for us. Therefore, in this area we evaluated the articles which reported similar results.

The study results in these two parts suggest there is no effect of hepatitis B on the first and fifth minutes Apgar score. In the reports of papers which agreed there is significant effect of the disease on Apgar score, the higher incidence of preterm labor was considered as justification of this relation (19, 25). We did not encounter the existence of any heterogeneity between the studies involving the first minute Apgar score. In the other section there was low heterogeneity (I2 = 35%). When we look at the forest plot, we find that only one study (Sirinert's et al. study) announced different results. If this study is not included in tour, analysis the amount of I2 changes to 0%.

Our final result relates to fetal distress. The statistical analysis in this part showed that hepatitis B cannot be a risk factor for fetal distress. There was a low heterogeneity among the included studies (I2 = 35%), but from a clinical view it can increase the risk. Primary studies in this part have a wide confidence interval indicating variety of situations will cause fetal distress, calling for the need of more accurate studies to accurately verify this relation. In regards to justification the Yang et al. study declared hepatitis B infection in pregnant women can accompany with preeclampsia, severe anemia or placental chorionic disease, which are associated with Fetal Distress (25).

This study was one of the few studies that attempted to evaluate the adverse effects of hepatitis B on Birth outcomes, but it had some limitations. The first limitation was importing low-quality studies. The reason for this limitation was the small number of studies which had been conducted in this area. The other limitation was related to the nature of hepatitis B. Hepatitis B is endemic in some countries, such as China, and there have been many studies conducted in these countries but there are no English abstracts for them, necessitating searches in their native languages.

In this study, hepatitis B had a cause effect on LGA and macrosomia. Among the other considered adverse pregnancy outcomes, it did not have any significant effect. But, these conclusions should be assessed with further well designed studies.

Acknowledgments

This article is a part of the PhD thesis supported by grant from Shahroud University of Medical Sciences Research Council. We would like to thank the vice-chancellor of education, as well as the vice-chancellor of research and technology of the University for their financial support to carry out the study.

Footnotes

Conflict of Interest: The authors declare no conflict of interest in this study.

Funding/Support: This article is supported by Shahroud University of Medical Sciences

References

- Swindon's JSNA. Swindon hepatitis b and c joint strategic needs assessment.; 2013.
- 2. M. o. H. a. M. Education . Iran national hepatitis B and C control plan. 2012.
- 3. Wallace J, McNally S, Richmond J. National hepatitis B needs assessment.; 2007.
- 4. Asgari F, Haghazali M. Natural guideline of hepatits B.; 2007.
- Wong S, Chan LY, Yu V, Ho L. Hepatitis B carrier and perinatal outcome in singleton pregnancy. *Am J Perinatol.* 1999;16(9):485–8. [PubMed: 10774765].
- Pastorek JG, Miller JM, Summers PR. The effect of hepatitis B antigenemia on pregnancy outcome. *Am J Obstet Gynecol.* 1988;158(3):486–9.
- Degli Esposti S, Shah D. Hepatitis B in pregnancy: challenges and treatment. *Gastroenterol Clin North Am.* 2011;40(2):355-72. doi: 10.1016/j.gtc.2011.03.005. [PubMed: 21601784] viii.
- 8. Hieber JP, Shorey J, Combes B. Hepatitis and pregnancy.; 1977.
- 9. Medhat A, Shaaban MM, Makhlouf. Acute viral hepatitis in pregnancy. ;1993.

- Mirghani OA, Basama FM. Viral hepatitis in pregnancy. East Afr Med J. 1992:445–9.
- 11. Pavel A, Maior E, Cristae A. Detrimental effects of hepatitis B virus infection on the development of the product of conception. 1983
- 12. Nayak NC, Datta R. Aetiology and outcome of acute viral hepatitis in pregnancy. *J Gastroenterol Hepatol.* 1989;**4**:345–52.
- 13. Simms J. Semin Perinatol. Viral hepatitis pregnancy. 1993:384.
- 14. Siegel M. Low birth weight and maternal virus diseases. JAMA. 1966:568-9.
- 15. Hak AD, Kyun RL. The influence of hepatitis B virus on the fetus in pregnancy. *Acta Paediatr J.* 1987:449–54.
- Vandenbroucke JP, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. *PLoS Med.* 2007;10(4).
- Lobstein S, Faber R, Tillmann HL. Prevalence of hepatitis B among pregnant women and its impact on pregnancy and newborn complications at a tertiary hospital in the eastern part of Germany. *Digestion*. 2011;83(1-2):76–82. doi: 10.1159/000320455. [PubMed: 21042018].
- kong D, I.H Y, Bu Y, Yanw H, Hanwe H, Zhaona Q, et al. The effect of chronic hepatitis B virus infection (CHB) during pregnancy on the neonatal growth and development. JMS. 2014;3(41).
- Elefsiniotis IS, Brokalaki H, Tsoumakas K. Maternal HBsAg status and infant size: theimportance of viral load and HBsAg quantification. *Viral Hepatitis*. 2013;20(444).
- Lu Y, Chen Y, Xiao X, Liang X, Li J, Huang S, et al. [Impact of maternal hepatitis B surface antigen carrier status on preterm delivery in southern China]. *Nan Fang Yi Ke Da Xue Xue Bao*. 2012;**32**(9):1369–72. [PubMed: 22985586].
- 21. moga M, Bagiu N. Is maternal hbs ag carrier status associated with adverse pregnancy outcome?. *Obstetrics*. 2012;**31**(19).
- Reddick KL, Jhaveri R, Gandhi M, James AH, Swamy GK. Pregnancy outcomes associated with viral hepatitis. J Viral Hepat. 2011;18(7):e394–8. doi: 10.1111/j.1365-2893.2011.01436.x. [PubMed: 21692952].
- 23. Lao TT, Leung WC, Ho LF, T KY. Maternal hepatitis B infection and gestational diabetes mellitus. J Hepatol. 2007;1(47):46–50.

TCN

- 24. To WW, Cheung W, Mok KM. Hepatitis B surface antigen carrier status and its correlation to gestational hypertension. *Aust N Z J Obstet Gynaecol.* 2003;**43**(2):119–22. [PubMed: 14712966].
- 25. Yang H, C.R. LZ, Zhou G, Zhao Y, Cui D, Li S, et al. Analysis of fetal distress in pregnancy with hepatitis B virus infection. *Zhonghua Fu Chan Ke Za Zhi*. 2002;**4**(37):211–3.
- 26. Connell LE, Salihu HM, Salemi JL, August EM, Weldeselasse H, Mbah AK. Maternal hepatitis B and hepatitis C carrier status and perinatal outcomes. *Liver Int*. 2011;**31**(8):1163–70.
- 27. Lert-amornpong S, Caengow S, Chutaputti A. The association of pregnancy outcomes and HBsAg positive. *Thai J Gastroenterol.* 2007;**8**(3):115–8.
- MAK SL. Hepatitis b carriers in hong kong: Prevalence and pregnancy outcomes. HKJGOM. 2013;1(13).
- 29. Aghamohammadi A. Maternal Hbsag Carrier and Pregnancy Outcome. Austr J Basic App Sci. 2011;3(5):607–10.
- 30. Kong D, L.H Y, Bu yi C, Yan W, hu A, Ha W. The effect of chronic hepatitis B virus infection (CHB) during pregnancy on the neonatal growth and development. *Fudan Univ Med Sci.* 2014;3(41).
- 31. Tse KY, Ho LF, Lao TT. The impact of maternal HBsAg carrier status on pregnancy outcomes: a case-control study. J hepatol. 2005;43(5):771–5.
- Sirilert S, Traisrisilp K, Sirivatanapa P, Tongsong T. Pregnancy outcomes among chronic carriers of hepatitis B virus. Int J Gynecol Obs. 2014;126(2):106-10.
- Saleh-Gargari S, Hantoushzadeh S, Zendehdel N, Jamal A, Aghdam H. The association of maternal HBsAg carrier status and perinatal outcome. *Hepat Mon.* 2009;9(3):180–4.
- Lao TT, Sahota DS, Suen SS, Law LW, Leung TY. Maternal HBsAg status and infant size-a Faustian bargain?. J Viral Hepat. 2012;19(7):519–24. doi:10.1111/j.1365-2893.2011.01575.x. [PubMed: 22676365].
- 35. Higgins JPT, Green S. The cochrane collaboration.; 2008.
- 36. Borenstein M, Hedges L, Rothstein H. In: Introduction to metaanalysis. Borenstein M, Hedges LV, Higgins JPT, Roth-stein H, editors. Chichester: John Wiley and Sons; 2007. pp. 11–21.Meta-analysis: fixed effect vs. random effects.

	CASE		Con			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
28.1.1 quality							
De-chuan kong2014	7	72	130	956	3.5%	0.68 [0.31, 1.52]	
ElefsiniotisI. S2013	1	46	45	46	0.4%	0.00 [0.00, 0.01]	•
Laura E2011	105	1222	106310	1668911	8.6%	1.38 [1.13, 1.69]	*
LU Yongping2012	17	188	17	265	4.2%	1.45 [0.72, 2.92]	
Shui-Lam MAK2013	50	748	710	8778	7.7%	0.81 [0.60, 1.10]	
Sirinart Sirilert2014	229	1446	3102	21812	9.0%	1.13 [0.98, 1.31]	•
T. T. Lao2012	169	6261	1842	55817	8.9%	0.81 [0.69, 0.95]	-
Terence T. Lao2007	51	1138	703	12547	7.8%	0.79 [0.59, 1.06]	-
Subtotal (95% CI)		11121		1769132	50.0%	0.91 [0.68, 1.21]	
Total events	629		112859				
Heterogeneity: $Tau^2 = 0$	0.12; Chi ² =	54.01, d	f = 7 (P < 0)	0.00001); I ²	² = 87%		
Test for overall effect: Z	= 0.68 (P=	= 0.50)					
28.1.2 high quality							
Laura E2011	105	1222	106310	1668911	8.6%	1.38 [1.13, 1.69]	•
Shui-Lam MAK2013	50	748	710	8778	7.7%	0.81 [0.60, 1.10]	
Sirinart Sirilert2014	229	1446	3102	21812	9.0%	1.13 [0.98, 1.31]	-
T. T. Lao2012	169	6261	1842	55817	8.9%	0.81[0.69, 0.95]	-
Subtotal (95% CI)		9677		1755318	34.1%	1.02 [0.79, 1.31]	•
Total events	553		111964				
Heterogeneity: Tau ² = 0	0.05; Chi² =	= 20.81, c	df = 3 (P =	0.0001); I ²	= 86%		
Test for overall effect: Z	= 0.13 (P=	0.89)					
					Vi		
28.1.3 low quality							
De-chuan kong2014	7	72	130	956	3.5%	0.68 [0.31, 1.52]	
ElefsiniotisI. S2013	1	46	45	46	0.4%	0.00 [0.00, 0.01]	•
LU Yongping2012		100	17	265	4.2%	1.45 [0.72, 2.92]	+
	17	188					
Terence T. Lao2007	17 51	188	703	12547	7.8%	0.79 [0.59, 1.06]	-
01 0				12547 13814	7.8% 15.9%	0.79 [0.59, 1.06] 0.39 [0.12, 1.27]	
Terence T. Lao2007		1138					
Terence T. Lao2007 Subtotal (95% CI) Total events	51 76	1138 1444	703 895	13814	15.9%		
Terence T. Lao2007 Subtotal (95% CI)	51 76 .13; Chi² = 2	1138 1444 29.64, di	703 895	13814	15.9%		
Terence T. Lao2007 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.	51 76 .13; Chi² = 2	1138 1444 29.64, di	703 895	13814	15.9%		
Terence T. Lao2007 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.	51 76 .13; Chi² = 2	1138 1444 29.64, di	703 895	13814	15.9%		
Terence T. Lao2007 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1. Test for overall effect: Z	51 76 .13; Chi² = 2	1138 1444 29.64, di 0.12)	703 895	13814 0.00001); 1 ²	15.9% =90%	0.39 [0.12, 1.27]	
Terence T. Lao2007 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1. Test for overall effect: Z Total (95% CI) Total events	51 76 .13; Chi ² = 2 = 1.57 (P = 1258	1138 1444 29.64, d 0.12) 22242	703 895 f = 3 (P < C 225718	13814).00001); 1 ² 3538264	15.9% = 90% 100.0%	0.39 [0.12, 1.27]	
Terence T. Lao2007 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1. Test for overall effect: Z Total (95% CI)	51 76 .13; Chi ² = 2 = 1.57 (P = 1258 .10; Chi ² =	1138 1444 29,64, d 0.12) 22242 108.03,	703 895 f = 3 (P < C 225718	13814).00001); 1 ² 3538264	15.9% = 90% 100.0%	0.39 [0.12, 1.27]	0.01 0.1 1 10 preventive risk

Figure 9. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Low Birth Weight (LBW), Using a Random-Effects Model. (Sub-Group Analysis Based on Study Quality)

	Experim	ental	Con	itrol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
6.1.1 study design							
Dh-chuan kong2014	7	72	130	956	3.5%	0.68 [0.31, 1.52]	
Elefsiniosl.S2013	1	46	45	46	0.4%	0.00 [0.00, 0.01]	•
laure E 2011	105	1222	106310	1668911	8.6%	1.38 [1.13, 1.69]	-
lu Yongping2012	17	188	17	265	4.2%	1.45 [0.72, 2.92]	
Mak shui-lam2013	50	748	710	8778	7.7%	0.81 [0.60, 1.10]	
SIRINART 2014	229	1446	3102	21812	9.0%	1.13 [0.98, 1.31]	•
TERANCE T LAO2007	51	1138	703	12547	7.8%	0.79 [0.59, 1.06]	
TT.LAO2012	169	6261	1842	55817	8.9%	0.81 [0.69, 0.95]	-
Subtotal (95% CI)		11121		1769132	50.0%	0.91 [0.68, 1.21]	
Total events	629		112859				
Heterogeneity: Tau ² = 0.	12; Chi² = 54	1.01, df = 2	7(P<0.0	0001); $I^2 = 8$	37%		
Test for overall effect: Z	= 0.68 (P = 0	0.50)					
6.1.2 cohort							
laure E 2011	105	1222	106310	1668911	8.6%	1.38 [1.13, 1.69]	T
SIRINART 2014	229	1446	3102	21812	9.0%	1.13 [0.98, 1.31]	
TERANCE T LAO2007	51	1138	703	12547	7.8%	0.79 [0.59, 1.06]	-
TT.LAO2012	169	6261	1842	55817	8.9%	0.81 [0.69, 0.95]	-
Subtotal (95% CI)		10067		1759087	34.2%	1.01[0.78,1.30]	•
Total events	554		111957				
Heterogeneity: Tau ² = 0.	.06; $Chi^2 = 2$	1.57, df =	3 (P < 0.0	001); $I^2 = 86$	5%		
Test for overall effect: Z	= 0.08 (P = 0	0.94)				1	
6.1.3 case control							
Dh-chuan kong2014	7	72	130	956	3.5%	0.68 [0.31, 1.52]	
Elefsiniosl.S2013	1	46	45	46	0.4%	0.00 [0.00, 0.01]	٩
lu Yongping2012	17	188	17	265	4.2%	1.45 [0.72, 2.92]	+
Mak shui-lam2013	50	748	710	8778	7.7%	0.81 [0.60, 1.10]	
Subtotal (95% CI)		1054		10045	15.8%	0.39 [0.12, 1.28]	
Total events	75		902				
Heterogeneity: Tau ² = 1.1	4; Chi ² = 29	.64, df = 3	B(P < 0.0)	0001); $I^2 = 9$	90%		
	= 1.55 (P = 0.	12)					
Test for overall effect: Z							
				3538264	100.0%	0.91 [0.76, 1.11]	•
Test for overall effect: Z Total (95% CI)		22242		3336204			
	1258	22242	225718	3336204			
Total (95% CI)							0.01 0.1 1 10 10

Figure 10. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Low Birth Weight (LBW), Using a Random-Effects Model. (Sub-Group Analysis Based on Study Design)

	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
7.1.1 study design							
Dh-chuan kong2014	5	72	36	956	0.4%	1.91 [0.72, 5.02]	
lu Yongping2012	8	188	12	265	0.7%	0.94 [0.38, 2.34]	
Mak shui-lam2013	24	748	305	8778	3.6%	0.92 [0.60, 1.40]	+
SIMON LOBSTEIN2010	1	39	50	8154	0.0%	4.27 [0.57, 31.67]	
SIRINART 2014	53	1446	787	21812	7.4%	1.02 [0.77, 1.35]	+
Soraya Saleh-gargari2009	30	450	10	450	0.7%	3.14 [1.52, 6.51]	_
TERANCE T LAO2007	34	1138	464	12547	5.9%	0.80 [0.56, 1.14]	
TT.LAO2012	275	6261	2065	55817	31.2%	1.20 [1.05, 1.36]	
Subtotal (95% CI)		10342		108779	50.0%	1.14 [1.02, 1.26]	
Total events	430		3729				
Heterogeneity: Chi ² = 16.33, d	lf = 7 (P = 0)	.02); I ² =	57%				
Test for overall effect: $Z = 2.39$	9 (P=0.02)						
7.1.2 cohort							
SIMON LOBSTEIN2010	1	39	50	8154	0.0%	4.27 [0.57, 31.67]	
SIRINART 2014	53	1446	787	21812	7.4%	1.02 [0.77, 1.35]	•
TERANCE T LAO2007	34	1138	464	12547	5.9%	0.80 [0.56, 1.14]	
TT.LAO2012	275	6261	2065	55817	31.2%	1.20 [1.05, 1.36]	
Subtotal (95% CI)		8884		98330	44.5%	1.12 [1.00, 1.25]	•
Total events	363		3366				
Heterogeneity: Chi² = 6.59, d	f = 3 (P = 0.	09); $I^2 = 3$	55%				
Test for overall effect: Z = 1.95 7.1.3 case control	5 (P=0.05)						
	-	72	36	056	0.4%		
Dh-chuan kong2014 lu Yongping2012	5 8	72 188	12	956 265	0.4% 0.7%	1.91 [0.72, 5.02]	
Mak shui-lam2013	8 24	748	305	8778	0.7% 3.6%	0.94 [0.38, 2.34] 0.92 [0.60, 1.40]	
Soraya Saleh-gargari2009	24 30	450	10	450	3.6% 0.7%	3.14 [1.52, 6.51]	
Subtotal (95% CI)	30	450 1458		450 10449	5.5%	3.14 [1.52, 6.51] 1.29 [0.95, 1.74]	•
Total events	67		363		0,0,0		`
Heterogeneity: Chi ² = 9.28, d		03) 12 - 4					
Test for overall effect: Z = 1.63		03), 1- = 0	10/0				
101 Over all effect, Z = 1.03	5(r - 0.10)						
Total (95% CI)		20684		217558	100.0%	1.14 [1.05, 1.22]	•
Total events	860		7458				ľ
Heterogeneity: $Chi^2 = 32.65$, o		0.005)•1					├ ── ├ ── ├ ── │
Test for overall effect: Z = 3.38	-		1/0				0.01 0.1 1 10 100
							preventive factor risk factor

Figure 11. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Macrosomia, Using the Random-Effects Model. (Sub-Group Analysis Based on Study Design)

udy or Subgroup 0.1.1 New Subgroup e-chuan kong2014 J Yongping2012	Events	Total	-				
e-chuan kong2014			Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
0							
I Vongping2012	5	72	36	956	2.1%	1.91 [0.72, 5.02]	
J Toligping2012	8	188	12	265	2.3%	0.94 [0.38, 2.34]	
nui-Lam MAK2013	24	748	305	8778	7.2%	0.92 [0.60, 1.40]	+
mon Lobstein2010	1	39	50	8154	0.5%	4.27 [0.57, 31.67]	
rinart Sirilert2014	53	1446	787	21812	10.6%	1.02 [0.77, 1.35]	+
oraya Saleh-Gargari2009	30	450	10	450	3.3%	3.14 [1.52, 6.51]	
T. Lao2012	275	6261	2065	55817	15.3%	1.20 [1.05, 1.36]	•
erence T. Lao2007	34	1138	464	12547	8.7%	0.80 [0.56, 1.14]	-
ıbtotal (95% CI)		10342		108779	50.0%	1.15 [0.90, 1.46]	
otal events	430		3729				
eterogeneity: Tau ² = 0.05; Cl	ni² = 16.32,	df = 7 (F	= 0.02);	$I^2 = 57\%$			
est for overall effect: $Z = 1.13$ (P=0.26)						
0.1.2 high quality							
nui-Lam MAK2013	24	748	305	8778	7.2%	0.92 [0.60, 1.40]	
rinart Sirilert2014	53	1446	787	21812	10.6%	1.02 [0.77, 1.35]	.) +
oraya Saleh-Gargari2009	30	450	10	450	3.3%	3.14 [1.52, 6.51]	
T. Lao2012	275	6261	2065	55817	15.3%	1.20 [1.05, 1.36]	
ıbtotal (95% CI)		8905		86857	36.4%	1.20 [0.90, 1.59]	•
otal events	382		3167				
eterogeneity: Tau ² = 0.05; Cl	ni² = 9.37, o	df = 3 (P	= 0.02); I	² = 68%			
est for overall effect: Z = 1.26	(P=0.21)				\mathbf{Q}_{1}		
0.1.3 low quality							
e-chuan kong2014	5	72	36	956	2.1%	1.91 [0.72, 5.02]	+
J Yongping2012	8	188	12	265	2.3%	0.94 [0.38, 2.34]	
mon Lobstein2010	1	39	50	8154	0.5%	4.27 [0.57, 31.67]	
erence T. Lao2007	34	1138	464	12547	8.7%	0.80 [0.56, 1.14]	-
ıbtotal (95% CI)		1437		21922	13.6%	1.12 [0.65, 1.93]	•
otal events	48		562				
eterogeneity: Tau ² = 0.13; Ch	$i^2 = 5.01$, d	f = 3 (P =	= 0.17); I ² =	= 40%			
est for overall effect: Z = 0.39	(P = 0.70)						
otal (95% CI)		20684		217558	100.0%	1.13 [0.98, 1.31]	•
otal events	860		7458				
eterogeneity: Tau ² = 0.03; Ch	ni² = 32.64	, df = 15 (P=0.00	5); I ² = 54%	ŝ		0.01 0.1 1 10
est for overall effect: Z = 1.63	(P = 0.10)						0.01 0.1 1 10 preventive risk

Figure 12. Effect of Chronic Hepatitis B Infection During Pregnancy on the Occurrence of Macrosomia, Using a Random Effects Model. (Sub -Group Analyses Based on Study Quality)