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Aptamers are ligands made of single-stranded DNA, oligonucleotide RNA or short
peptides which bind specifically to their target molecules with high affinity. They
resemble different types of monoclonal, polyclonal and recombinant antibodies in
their mode of attachment. Aptamers optimally bind their targets in a range of mmol
to rmol. Targets vary from small molecules to macromolecules to whole cells.
Systematic evolution of ligands by exponential enrichment is an affinity-based
screening method for aptamers. Examples of aptamer applications include structural
analysis of molecules, affinity/specificity testing, epitope mapping, making aptamer
libraries by systematic evolution of ligands by exponential enrichment, pathogenic
targeting, specific molecular targeting, live cell targeting, analytical applications,
therapeutic potentials and drug delivery. Staphylococcal enterotoxin B is one of the
most important bacterial toxins in different disorders. Aptamers offer a fast, feasible,
reliable and affordable method for detecting this toxin.
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Introduction

Recent developments in molecular biology and bioinfor-
matics have improved our expertise in molecular
recognition and detection. Concurrently, adaptive mol-
ecular evolution assays (such as phage display) along with
in-vitro detection technology and advances in bioinfor-
matics have made it possible to narrow down the range of
large datasets to make exact predictions in molecular
recognition [1]. Designing aptamers is still in its infancy in
biological determination because of the limitations of our
knowledge about molecular structures. The word aptamer
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was coined first by Szostak et al. meaning ‘to fit the part’
(‘apta’ means ‘to fit’ in Latin and ‘meros’ means ‘part’ in
Greek) [2]. There is a 25-year history of aptamer science
[3]. Aptamers are single-stranded DNA (ssDNA), oligo-
nucleotide RNA ligands which bind with high affinity
specifically to their target molecules in the same fashion
that different kinds of monoclonal, polyclonal and
recombinant antibodies bind their targets [4]. Peptide
aptamers also exist with similar properties [5]. Natural
aptamers such as riboswitches can also be found among
Reg-RNAs (a regulatory RNA motif). Aptamer-target
binding affinity is in the range of mmol to pmol. They
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Fig. 1. SystematicAQ22 evolution of ligands by exponential enrichment procedures and different methods which used to obtain
single-stranded DNA from dsDNA.
interact and bind to their specific target through three-
dimensional structural recognition. The binding to the
target is so specific that it makes aptamers able to
discriminate between two similar molecules containing
just two different functional groups or even the same
moleculeswith different conformations [5–7]. The affinity
and specificity of aptamers and antibodies are comparable
(Table 1). Selected aptamers have been used in vitro for
various targets [40]. Targets range from small molecules to
macromolecules to whole cells. In-vitro selection of
aptamers has the potential of numerous chemical
modifications, various conditions of selection and scale-
up synthesis even up to kilogram scales. On the contrary,
antibodies are developed and produced by in-vivo
biological assays and their target antigens are almost
limited to nontoxic macromolecules. Aptamers have
superior properties compared with antibodies in target
range, selection flexibility, postsynthesis modifications and
in production costs. For example, aptamers can function
both inside and outside cells [5,41], whereas antibodies
usually interact outside cells to target secretory proteins or
cell surface receptors. In therapeutic applications, aptamers
have shown no intrinsic toxicity and immunogenicity
[4,5,9,42,43]. Their capability as a potent inhibitory
activity agent has been described in various studies and
makes them an ideal candidate for therapeutic uses.
Systematic evolution of ligands by exponential enrichment
(SELEX) is an affinity-based selection method for aptamers
[4]. Variations of the SELEX protocols have allowed
isolation of aptamers with specific desirable properties
expanding the repertoire of aptamer functions. Nucleic
acid aptamers are typically isolated from large libraries
containing approximately 1015 different sequences [1].
Various microbial and chemical toxins [1,44], organic and
inorganic dyes [1,45], drugs, different proteins [1,46,47]
and eukaryotic cells have been described as targets [48].
Obviously, aptamers are attractive molecular recognition
agents compared with antibodies for therapeutic purposes,
diagnostic means [48,49] and biosensing [49,50]. In
addition, genomic SELEX are designed for genomic
aptamers, which function on nucleic acid domains that
identify and bind specific ligands [43,51]. Major sequence
databases such as ‘GenBank’ [52,53], ‘EMBL’ [54,55] and
‘DDBJ’ [56] do not support the list of artificial aptamer
sequences. Thus, some alternative databases such as
‘Aptamer Database’ designed for comprehensive sequence
search for aptamers and nonnatural ribozymes generated
by in-vitro selection methods have been used. This
database is updated monthly and is available to the public
at http://aptamer.icmb.utexas.edu/. In addition, there are
some bioinformatics programmes such as ‘ValFold’ (free
package available at http://code.google.com/p/valfold/)
for computational analysis of aptamers [57]. Another free
open licensed community-built source for functional and
structural aptamer data is Aptamer Base (http://www.free
base.com) that provides information for more than
22 million topics and its literature entries, which is
accessible from 2006 to present, and data are added on a
weekly basis. The focus of this database is on experimental
designs for generating results that are used for identification
of biomolecular interactions [58]. Aptamer biology and
aptamers consist of some phrases, characteristics, modifi-
cation and specific procedure by its own that could be
helpful to know. The main aim of this review was to
exhibit the improvement in power of evaluation and
present a new useful method in addition to previous
immunoserological ones, for qualitative and quantitative
affinity and specificity measurement.
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Table 1. A brief comparison between different features of aptamers, antibodies and chemicals.

Attribute Antibodies Aptamers Chemicals Reference

Size 150 kDa 10–15 kDa <1 kDa [8]
Targets Haptens or macromolecules Everything including toxic targets from ions to

macromolecules
Proteins [9]

Affinity nmol–pmol mmol–pmol mmol–nmol [10]
Specificity Capable to distinguish even a single chemical

group difference and conformational
differences

Capable to distinguish even a single chemical
group difference and conformational
differences

Fit to a binding site of a molecule [11]

Immunogenicity Yes No No [9,12]
Tissue penetration Difficulty in penetration Moderate ability to enter Enter cells and tissues easily [13]
Function inside cells No Yes Yes [14,15]
Availability of antidotes No Antisense oligonucleotide Sometimes [16,17]
Breaking the interface between

macromolecules
Capable to block macromolecules interaction Capable to block macromolecules interaction Difficult to break interface between

macromolecules
[18,19]

Screening process In-vivo selection among biological systems In-vitro combinatory chemistry selection In-vitro rational design or combinatory
chemistry selection

[20,21]

Selection condition Physiological Various Various [2,22]
Chemical modification Limited Various Various [23]
Thermostability Sensitive to temperature Stable Stable [24,25]
Shelf life �5 years Unlimited Unlimited [26,27]
Stability Hours to days Hours to days Minutes to days [23]
Nuclease degradation Not affected affected Not affected [28,29]
In-vitro capability No Yes Yes [30,31]
Ability to be modified No Yes Yes [32]
Shipping Dry ice/overnight Ambient temperature Ambient temperature [33,34]
Detection systems Well developed but complex Recently developed but simple Well developed but complex [35]
Consistency of performance Lot-to-lot variation is an issue Lot-to-lot variation is not an issue Lot-to-lot variation is not an issue
Identification Well developed Prone to failure Well developed [36,37]
Quality control Well developed Developing Well developed
Cost Very expensive Relatively expensive Inexpensive [38,39]
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Smart aptamers

In a computational process, structural stability and specific
binding affinity of aptamers are mathematically pre-
dictable using parameters such as k(on), k(off) and kd, and
thermodynamic parameters like in a distinctive biomo-
lecular interaction. These types of aptamers which are
selected with predefined equilibrium (kd), rate (kon and
koff) constants and thermodynamic parameters such as
DH and DS are termed ‘smart aptamer’ and they could be
isolated using kinetic capillary electrophoresis [59].
AQ9
Aptamer characteristics

Structural features of aptamers
Different structures are possible for different kind of
RNA, DNA or protein aptamers due to their sequence,
physicochemical properties and their target. Three most
prevalent predictable forms of aptamers include hairpins
(both in RNA and DNA aptamers), pseudoknots (mostly
RNA aptamers) and quadruplexes (four-armed structures
formed by interaction of four guanine nucleotides) which
match together (G-quartet or G4) [60].

Affinity and specificity
One of the best targets for aptameric selection is proteins.
Dissociation constants (Kd) of aptamer-protein complexes
usually lie in nanomolar and subnanomolar ranges
(10–11–10–9 mol/l). Kd is usually 10–6 to 10–7 mol/l
for low-molecular weight targets [61].

Interaction will be more specific if aptamers bind to
variable region of a protein molecule, as opposed to the
conserved region. This is because of the presence of
multiple recognizable epitopes in the variable regions of
the proteins [60].

Epitopes recognized by aptamers
As with antibodies, aptamers bind to proteins at specific
surface recognition sites called epitopes. Epitopes of
proteins have been recognized by most aptamers [60–63].
In contrast to antibodies, native proteins are usually
used as targets in aptameric selection. Therefore, it is
possible for aptamers to recognize several protein sites in a
three-dimensional structure. Compared with antibodies,
aptamers are selected within an organism for binding to
relatively short fragments of processed protein targets.
Site-directed selection of aptamers is a method designed
to avoid binding of aptamers to undesirable epitopes or on
the contrary, used to recognize a particular epitope of
a protein.
AQ10
SOMAmer arrays

Based on protein-binding and complementary base-
pairing features of aptamers, Gold et al. [64] developed a
new revolutionary detection and sensing aptamers in the
context of proteomics which is called ‘slow off-rate
modified aptamer’ or SOMAmer technology. These are
the new generation of aptamers. This method extends the
possibility of aptamer-based pathogen supervision. The
primary innovation in SOMAmer development was
stimulated by the idea that aptamers can exhibit protein-
like behaviours if we add functional groups to the amino
acid side-chains resembling their diverse chemical effects.
Therefore, two important innovations in SOMAmers
deployed are as follows: having chemically modified
nucleotides so they have protein-like properties, and
manipulated kinetics to improve the specificity. Incorp-
oration of four modified dUTP analogs into DNA library
have been done through polymerase extension of a
primer annealed to a biotinylated template. The DNA
library containing modified nucleotides is incubated with
the target molecule after separation from biotinylated
templates. The slow off-rate enrichment and partition
process is used extensively in washing with large volumes.
After separation of the bound DNA from the unbound
DNA, the enriched DNA sequences are amplified by
PCR to prepare the DNA pool for the next round of
selection. Because of the functional groups that mimic
amino-acid side-chains, modified DNA library which
contain the generated SOMAmers are thought to have
some ‘protein like’ properties. The more different
modifications are done on nucleotides by different
microbial surface antigens, such as proteins or carbo-
hydrates for SELEX against difficult targets, the more
SOMAmers are capable of binding to the target. Massive
potential with below 30 nmol pool kd values has been
demonstrated from aptamers successfully obtaining
against 1200 human proteins. First, biotinylated SOMA-
mers are incubated with samples, and then SOMAmer-
protein complexes are captured onto streptavidin-coated
beads. After washing, modification with a NHS-biotin
tag is performed on complex target proteins. Selective
disruption of nonspecific binding interactions is done,
and the complexes are photo-cleaved from the first set of
beads and challenged with a polyanionic competitor
(dextran sulphate). The complexes are then attached via
the target protein biotin to a second set of avidin-coated
beads. Bound SOMAmers are released from their targets
and quantified after washing [61].
Aptamers targeting pathogenic
determinants

Staphylococcus aureus is associated with nosocomial
infections, food poisoning, superantigen-derived diseases
(such as toxic shock-like syndrome) and antibiotic
resistance. Different virulence factors of S. aureus provide
good targets to determine the presence of pathogen and
estimate its pathogenesis. One virulence factor comprises
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Table 2. Different methods which are used for staphylococcal enterotoxin B detectionAQ23 .

Methods Sensitivity Reference

Biological assays 20 min with a sensitivity of 10–100 pg of SEB/ml of prepared food samples [67]
Immunological assays
Gel diffusion assays 0.1 mg/ml [68]
RPLA The kits showed high specificity and sensitivity with a detection limit of 0.75 ng

enterotoxin/g of food
[69]

Immunoelectrophoresis Radio-rocket is the most sensitive assay (250 pg/ml) [65,70,71]
Counter, rocket, fused-rocket

and radio-rocket platforms
ELISA The sensitivity of this assay reached 0.2 ng of SEB/ml PBS with BSA and fetal bovine

serum. It reached 0.39 ng of SEB/ml of 50 g/l skim milk, human urine and water; 1 ng/ml
of SEB could be detected in sandwich assay

[72–78]

Indirect, sandwich, competitive
PCR–ELISA Sensitivity and specificity of the sec-1 primer set were 100 and 82%, respectively. In a

real-time iqPCR method, sensitivity is 1000 times more (<10 pg ml/1) than the in-
h30 000 pg/mlouse ELISA and had a dynamic range of approximately AQ2410 pg/ml to
approximately

[69,79,80]

ELIFA The ELIFA system had a turnaround time of approximately 1 h and a detection limit of
1 ng/ml of purified SEB.

[75]

The ELISA had a total turnaround time of 21 h, or 3 h using plates precoated overnight with
the capture antibody. The detection limit of the ELISA for purified SEB was 0.05 ng/ml

CNT-ELISA 100–100 ng/ml [81,82]
EMIT Sensitivity is around 100 ng/ml of samples [69,74]
POC immunodetection system: POC’s sensitivity is 0.1 ng/ml [83]
ELISA–LOC
FELISA The described FELISA allows a SEB quantification of 0.1 fg/ml for purified toxin and a

detection limit of at least 10 pg/g of contaminated food
[64]

Magnet-beads immunoassay Magnet-beads immunoassay Sensitivity is 100 pg/ml [84–86]
Chromatography The ICT was completed within 30 min, providing a limit of detection close to 20 pg/ml in

buffer and showing no cross-reactivity with the other major toxin of the bacterium,
staphylococcal enterotoxin A

[84]

TLC, GC, HPLC, column C, ICT
RIA 1 ng/ml [87]
Flow cytometry Sensitivity estimated to be 0.01 and 0.25 ng/ml for buffer and milk samples, respectively [71]
Molecular probes and PCR Molecular probes and PCR [88]

CNT, carbon nanotube; ELIFA, Enzyme Linked Immunofiltration Assay; EMIT, enzyme-multiplied immunoassay technique; FELISA, Fluorogenic
Enzyme-Linked Immunosorbent Assay; ICT, immunochromatographic test; iqPCR, immunoquantitative PCR; LOC, Lab-On-a-Chip; RIA, radio-
immune assay; POC, point-of-care; RPLA, reverse passive latex agglutination; SEB, staphylococcal enterotoxin B.
the staphylococcal enterotoxins of which staphylococcal
enterotoxin B (SEB) is one of their most important.
Various immunoserological methods were applied in
toxin detection.

Staphylococcus aureus and one of its diarrhoea-
inducing toxins (staphylococcal enterotoxin B) as
a model for detecting and evaluating microbial
targets with aptamers
Food-borne diseases are one of the major human health
concerns worldwide and bacteria have been the causative
agents of two thirds of outbreaks. The general term,
poisoning, indicates any type of diseases or illnesses after
consuming food products. Among the 50 staphylococcal
virulence factors which have been described to date,
various enterotoxins are recognized as one of the main
causes of gastrointestinal tract poisoning. Staphylococcal
enterotoxins are notorious for their possible roles in many
other human diseases such as atopic dermatitis, Kawasaki
syndrome, nasal polyposis, and certain autoimmune
disorders. It is of great importance to develop a quick,
specific, sensitive and affordable method for its detection
and evaluation.
Common methods of microbial target detection
and evaluation
As summarized in Table 2, we can divide routinely used
methods for the detection of microbial whole cells and
their products into the following 12 main categories:
biological assays, immunological assays [64], chromatog-
raphy assays, radioimmunoassays, flow cytometry, mol-
ecular probes and PCR, solid phase surface immunoassay
technology, mass spectrometry (MS), matrix-assisted
laser desorption/ionization and electrospray ionization,
monosaccharide array-based assay, fluorescence reson-
ance energy transfer (FRET), and surface plasmon
resonance (does not provide binding efficiency infor-
mation, but is extremely useful for analyzing biochemical
interactions) [65,66]. In 2010, Imani et al. [89] reported
the antimetastatic effect of intravenous injection of SEB
and monophosphoryl lipid A against fibrosarcoma in lung
tissue. In addition, in another study, monophosphoryl
lipid A (SEB–MPL) treatment led to T-cell stimulation
and subsequently cytokine secretion. Results showed that
the optimal concentration of SEB and MPL for activation
of lymphocytes was 100 ng/ml (P< 0.05). Combination
of SEB and MPL can cause stronger stimulation and
proliferation of mouse lymphocyte cells compared with
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Table 3. Purified pathogen molecules and complete bacterial cells and viral particles that have been used in selection of aptamers by systematic
evolution of ligands by exponential enrichment.

Groups Microorganism and/or its product Complete bacterial cells and viral particles Reference

Bacteria Francisella tularensis (protein lysate) Escherichia coli DH5a [94,101,102]
Campylobacter jejuni (surface extract: protein lysate) Staphylococcus aureus
Salmonella enterica (serovar Typhi type IVB pilus) (outer

membrane proteins)
Streptococcus pyogenes

Listeria monocytogenes (internalin A) Bacillus thuringiensis spores
E. coli (release factor 1) (core RNA polymerase)

(lipopolysaccharide O111: B4)
Strep. pyogenes

Mycobacterium: Pseudomonas aeruginosa
M. avium sub. paratuberculosis MAP0105c gene product M. tuberculosis
M. tuberculosis MPT64 protein C. jejuni
M. tuberculosis polyphosphate kinase 2 Lactobacillus acidophilus
Burkholderia pseudomallei (BipD/BopE/BPSL2748) Salmonella enterica

Viruses HIV-1 (integrase, reverse transcriptase, nucleocapsid
protein, Tat protein, R5 SV, glycoprotein (gp120),
drug-resistant reverse transcriptase

Rous Sarcoma Virus particles [103,104]

Hepatitis C virus (RdRp, NS3, NS3 helicase, 30X tail, NS3
protease, NS5B RNA polymerase, IRES (internal
ribosome entry site)

MS-2 bacteriophage particles

Hepatitis B virus (HBsAg) Mammalian cells expressing hepatitis C E2
envelope glycoprotein

Influenza virus (H5N1 HA protein) Vaccinia-infected mammalian cells
SARS coronavirus (NTPase, Helicase) Human influenza A virus particles
Apple stem pitting virus (Coat proteins) Vaccinia virus particles
Foot and mouth disease virus (VP1 protein)
Venezuelan equine encephalitis virus (Capsid protein)
Ustilago maydis (corn pathogen) (RNA-binding protein

Rrm4)
Parasite Leishmania infantum (H2 antigen) Trypanosoma cruzi [105,106]

Live African trypanosomes
Prion proteins PrPsc – [107]

PrPsc fibrils
rPrPsc
rPrPc and mammalian prion proteins

Bacterial toxins SEB – [38,108,109]
Cholera toxin
Botulinum neurotoxin
Shiga toxin

HBsAg, hepatitis B surface antigen; MS, mass spectrometry; SEB, staphylococcal enterotoxin B.
each component separately [90]. Imani et al. also
investigated the invio induction of necrosis in murine
fibrosarcoma via intravenous injection of SEB by ELISA
and Flowcytometry [89] and exosome-SEB pancreas,
ovarian and breast antitumor activity with electron
microscopy and western blotting [91–93].

Selection against purified molecular targets
It is possible to do the selection against different purified
targets with fewer SELEX rounds. Numerous proteins
and microorganisms such as viruses and bacteria have
been used. Structural compounds such as carbohydrates
have also been tested as a target. An example is cell-surface
extracts of Campylobacter jejuni. Two high-affinity DNA
aptamers were selected against MgCl2-extracted surface
proteins of C. jejuni to utilize in magnet bead and red
quantum dot-based sandwich assay. Both heat-killed and
live bacterial cell were used in this method and final limit
of detection report 2.5–250 colony forming unit in
buffer and different food matrix [94,95]. Due to
Escherichia coli, its release factor 1, core RNA polymerase
and lipopolysaccharide O111:B4 were targeted for RNA
and DNA aptamer selection [94,96,97]. Recently, a DNA
aptamer has been designed against VP1 capsid protein of
norovirus genotype II-4 [98]. Aspartyl protease is a key
protein in morphogenesis of HIV-1 virus. A new RNA
aptamer with high affinity against this protein was
performed in 2015 [99]. There are key factors in the
regulation of protein stability, vRNA promoter binding
and endonuclease activity in connection with amino acid
residues in the N-terminal of the PA subunit (PAN) of the
influenza A polymerase. Targeting the PA endonuclease
domain by an isolated new DNA aptamer led to cross-
protection due to influenza A virus infection [100].
Table 3 shows a summary of purified molecules from
pathogens against which aptamers have been selected.

Aptamers against live cells
In some cases, aptamers were designed against whole cell
of a particular microorganism. In such applications,
aptamers may have been restricted use because of the
slight differences between the specific binding sites of a
natural cell and its purified components. Nevertheless,
antiwhole cell aptamers are increasingly becoming
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favourites in whole cell SELEX-aptamer (cell-SELEX).
One strong reason is that it bypasses complex purification
and target-partitioning steps. Bacterial cells present
unique challenges over mammalian cells due to their
cell-wall structure. Gram-negative bacteria possess a
negatively charged outer membrane that can repel
nucleic-acid molecules. Capsules covering the surface
of many pathogenic bacteria can also obscure target
proteins. Both of these factors make it difficult to generate
aptamers that bind to the surface molecules of bacterial
cells. In addition, bacteria often grow much faster than
culture cells of mammalian tissue. Short generation times
lead to rapid changes in protein expression and high
surface variation between cultures and colonies. Such
variation can impede consistent measurement of aptamer
binding [110].

In cell-SELEX, pathogenic bacteria are incubated in a
solution with a randomized nucleic-acid library. Cell-
bound nucleic acids are separated from unbound nucleic
acids via centrifugation. Cells are then washed, and cell-
bound nucleic acids are eluted using low salt concen-
trations at high temperature. Cell-bound aptamers can
also be amplified directly from the cell surface. Aptamer
pools obtained after each round are screened for increased
target-cell binding affinity (e.g. by flow cytometric
analysis). Rounds of counterselection against nontarget
cells, in which the sequences bound to the nontarget cells
are removed, can be introduced after the first two rounds
of positive selection. Alternatively, positive selection and
counterselection rounds can be used [101,102,110–113].
Analytical applications of aptamers

Aptamers are used in a variety of assays that convention-
ally use antibodies (ELISA-like assays, western blotting,
flow cytometry, microscopy, affinity chromatography and
capillary electrophoresis). Also, many novel technologies
(e.g. aptamer-based biosensors, nanodevices, ligation and
amplification assays) are being developed by taking
advantage of aptamers. The applications of aptamers
derived from whole cell-SELEX are limited, mainly
because the number of aptamers made against viral or
bacterial targets is limited.

Whole-cell aptamer technologies have potential appli-
cation against pathogens, or have already been used for
pathogen detection: aptamers can be used in sandwich
assays such as ELISA antibody-antigen systems, or
developed more via flow cytometry techniques instead
of using antibodies as a detector probe. In this case, flow
cytometry can be used as a useful tool both for evaluating
the aptamer target recognition, and for isolating cell
populations expressing a target. Briefly, aptamers are
fluorescently labelled and used to sort microorganisms.
For example, different S. aureus strains have been
successfully fluorescently labelled by five high-affinity
aptamers and differentiated from each other [114].
Flowcytometry was also used for binding affinity
determination between target and the aptamer pool
obtained from any particular rounds of SELEX. Bacterial
cell-SELEX targets against which this technique has been
applied include Lactobacillus acidophilus [101], Mycobacter-
ium tuberculosis [111], C. jejuni [112], S. aureus [110],
Pseudomonas aeruginosa [113], Streptococcus pyogenes [102].
Due to L. acidophilus, six to eight rounds of SELEX was
utilized and 164� 47 aptamer molecules were bound an
apparent Kd of 13� 3 nmol [101]. Single aptamer, named
‘NK2’, has isolated for virulent strain of M. tuberculosis
(H37Rv) with acceptable affinity. High effects of NK2,
proposed its potency as a new antimycobacterial agent
[115]. A newer method applied for detection as low as
150 and 760 cells ml�1 S. aureus in buffer and food matrix
(milk) than Aptamer/FITC-based flow cytometry which
is called ‘aptamer recognition and fluorescent silica
nanoparticles’ label based dual-colour flow cytometry
assay (Aptamer/ fluorescent silica nanoparticles-
DCFCM)’. This new method is based on two colour
flow cytometry [116].

Recently, flow cytometry has been used to screen
aptamers that are specific for vaccinia-virus-infected
A549 cells [117]. Aptamers are conjugated to fluorescent
nanodye particles increasing fluorescence intensity and
detection sensitivity in comparison with the regular flow
cytometry labelling during flow cytometry analysis [118].

Using aptamer/antigen interactions for
developing biosensors
Diagnostic applications of aptamers primarily focus on
the use of aptamers as molecular recognition elements
within a larger biosensing system, using the aptamers as
probes for target molecules in a similar way to antibody
technologies [119]. Almost all biosensors comprise two
main parts: a biological molecular recognition element
and a signal-transduction element [94,101,114]. One of
the best reviews on the role of aptamers for biosensing is
written by Torres-Chavolla and Alocilja in 2009 [120].
Aptasensoric detection by electrochemical luminescence
sandwich format has been studied [116–118] in which
ssDNA aptamers with a high affinity for bacterial spores
were conjugated to magnetic beads and used as capture
reagents and the biotinylated aptamers were applied as
reporters. They have been able to detect even 10 single
spores with a linear dynamic range of 10–6� 106 [95].
MiladaIkanovi et al. [120] showed that aptasensors with
fluorescent labels were also used to detect as few as
1000 carbon forming unit (CFU)/ml of Bacillus thur-
ingiensis spores to cadmium selenide quantum dots. Using
quantum dots conjugation via magnetic beads in a
manner of sandwich assay, Bruno et al. [121] detected C.
jejuni by utilizing the bacterial surface protein. This
aptasensor could detect both live and heat-killed cells at
the range of 2.5 CFU in food complex matrices [95]. In
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addition, it is possible to label a polyclonal mixture of
aptamers by Alexa Fluor 546–14-dUTP and use in
FRET-based assay. Such method was used to detect as few
as 25 ng/ml Vp1 structural protein of FMD virus [121].
The same research technology allowed the design
aptamers against outer membrane proteins (OMPs) of
E. coli which were heavily labelled with Black Hole
Quencher. This method could detect as few as 30
unlabelled live cells [95,121]. Joshi et al. used aptamers to
detect Salmonella typhimurium OMPs conjugated to
magnetic beads without fluorescent labelling which is
done through amplifying by PCR. He was successful
in detecting 10–100 CFU/ml in normal mode and 4–
40 CFU/ml in magnetic-recirculation mode [112].

By using antibody-coated magnetic beads in 2009, Lee
et al. [122] implied that it is possible to yield a specific
aptamer for E. coli which is separable within linear dynamic
range of 10–107 E. coli/ml by the accuracy rate of 10 cells/
ml per sample. In another study by Zelada-Guillen et al.,
two major findings were reported: single-walled carbon
nanotube (SWCNT) and DNA capture-element sensing
system based on fluorescence quenching. SWCNT is a
new label-free rapid method which uses carbon nanotube
for specific aptamers by the accuracy rate of 1 CFU/ml in
less than 1 min in a linear dynamic range of 0.2–103 CFU.
They used SWCNT to create specific aptamer for
Salmonella typhi type IV pili and DNA capture-element
for the sensing of Bacillus thuringiensis, B. anthracis spores,
botulinum neurotoxin and MS-2 bacteriophage [120].
Ohk et al. [110] invented an optic-fibre aptasensor with
fluorescent labelling which detected Listeria monocytogenes;
this aptasensor could detect as few as 103 CFU/ml of
bacteria, and was able to detect contaminated poultry and
meat products such as turkey, chicken and beef. Lee et al.
[123] succeeded in producing a portable sensor platform
chip to detect food contamination with toxins and disease-
related metabolites by assembling carbon nanotubes on
SiO2 which was laid down with gold electrode with
immobilized aptamer on it. This is an aptamer sandwich-
based carbon nanotube sensor strategy which is capable of
differentiating between similar molecular species with
single-carbon-atomic resolution. To enhance the speci-
ficity, the procedure can be modified using biotin resulting
in sensitivity as low as 10 fmol [123]. Maurer et al. [81]
created another nano-featured biosensor platform for
sensitive, selective and rapid detection of E. coli on the basis
of carbon nanotubes embroidered with gold nanoparticles
modified with a specific, surface adherent RNA sequence.

Cell labelling and imaging
Aptamer-fluorescent conjugate could be considered as a
useful bioimaging tool in association with flow cytometry
[124]. Trypanosoma cruzi specific aptamers were used as
probes for the parasite’s surface antigens [125] labelling.
Fluorescence in situ hybridization has been applied to
label specific DNA aptamer against P. aeruginosa [126].
Optical microscopy has also been used to visualize the
density of aptamer-captured cells on a microfluidic device
[127]. Although it is easier for aptamers to label molecules
on the cell surface, they have also been used for
intracellular imaging. Imaging of bacterial RNA in live
cells (E. coli) has been accomplished using protein
complementation regulated by the interaction of an
RNA-binding protein and an aptamer. The RNA-
binding protein is engineered to express GFP only in the
aptamer-bound state; mRNA and rRNA can be tagged
with aptamer and be localized [128] (Table 3).
Therapeutic potential of aptamers

Several therapeutic applications have been defined for the
aptamers including new drug design, drug delivery and
tissue targeting [129]. For example, in the field of new
drug design, Pfizer and Eyetech Pharmaceuticals devel-
oped a pegylated-single strand aptamer with specificity to
vascular endothelial growth factor (VEGF 165). VEGF
165 plays an important role in membrane permeability
and angiogenesis [129]. Novel combination therapies
with an anti-VEGF and antiplatelet-derived growth
factor (anti-PDGF) could be the next big step ahead for
the treatment of wet-age-related macular degeneration.
Fovista is a new anti-PDGF phase-IIb aptameric drug
compatible with ranibizumab. A randomized controlled
phase II-b study assessed efficacy and safety of Fovista and
showed that 0.3 mg in combination with Lucentis (the
commonly prescribed drug for preventing age-related
macular degeneration treatment) is very effective. A new
phase II clinical trial aptamer drug REG1 has been
developed by Regado Bioscience as anticoagulation drug.
REG1consists of two components: RB006 (coagulation
factor IXa-specific aptamer) and RB007 (oligonucleotide
antidote of the RB006 aptamer) protecting the aptamer
against nuclease-mediated degradation, RB006 (a 20-ribo
purine/20-fluoro pyrimidine aptamer) conjugated to a
40 kDa PEG tail.

There are many aptamer-based drugs which are currently
in clinical trials such as NU172 (a thrombin-specific
aptamer) for anticoagulation, leukaemia, ARC1779 (a
von Willebrand factor-specific aptamer) for carotid artery
disease and AS1411 (a nuclein-specific aptamer) for acute
myeloid leukaemia [28,129,130]. Aptamer-based pro-
ducts are developed through different channels. Cell-
SELEX creates aptamers which can be used in reverse
chromatographic strategies for tumour cell marker
purification and identification.

Aptamers can even recognize molecular differences
between patient’s specific cancer markers in T-cell acute
lymphoblastic leukaemia [131]. In-silico data have been
incorporated to reduce the number of SELEX round. To
achieve this, new genetic algorithm has been designed for
post-SELEX screening. This method decreased the
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number of SELEX rounds to three to predict an
antiprostate antigen aptamer [132].

S. aureus is a pathogen with various potent toxins
including the enterotoxins. Spiegelmer is a mirror-image
aptamer for SEB designed in 2003 [133] which was
followed by preparation of an ssDNA aptamer against
SEB that was isolated by the magnet-bead method in
2012 [38]. Aptamers to other enterotoxins were
introduced for staphylococcal enterotoxin A in 2014
[134] and for staphylococcal enterotoxin C1 in 2015
[135]. Microbial toxins always have been good candidates
to isolate aptamers. Specific RNA aptamer with
protective effect on ricin target its A-chain structure
[136]. As aptamers have the potential to boost the human
immune system, they can be used as antimicrobial
products. ‘NK2’ aptamer is an anti-tuberculosis drug with
high affinity to M. tuberculosis (H37Rv) virulent strain
which has been introduced by Chen et al. [100] with no
cross-resistance with other known antimycobacterial
agents. Aptamers amplify the secretion of interferon-g
in human body via a CD4þ T-cell mechanism.

In another study, OMPs of Salmonella enterica serovar
typhimurium have been targeted for aptamer isolation. In
this study, a new sensitive DNA aptamer was presented by
using gel-shift analysis. Counterselection of E. coli LPS
and OMPs was chosen to improve their aptamer accurate
detection power and evaluation. MS and southern/
western blot analysis was used for OMPs identification
[137]. A list of aptamers which have progressed to clinical
trials was published by Stoltenburg et al. [2] and Bunka
et al. [12] (Table 3). Aptamers may undergo conformation
changes during binding into biotoxins so it is possible to
monitor changes in the distance between two fluor-
ophores (a donor and an acceptor). This phenomenon
also happens during FRET [72]. SOMAmer arrays have
been successfully applied to identify novel biomarkers in
chronic kidney disease and nonsmall-cell lung cancer.
SOMAmer and array technology were potentially
developed for pathogenic species and strain typing,
pathogen surveillance, and detection of different
microbial infections. They can differentiate between
the proteome profiles of pathogens and healthy humans.
Another usage of SOMAmers is comparison of antibiotic
resistance profiles of different bacterial species/strains,
comparison of proteome profiles or multiplex antimi-
crobial resistance screening among patients [138]. SEB is a
major virulence factor in toxic shock syndrome and
staphylococcal food poisoning. A DNA aptamer with
kd¼ 64 nmol was isolated with neutralization properties
against SEB [139].
Drug delivery

Another useful application of aptamers is to apply
them as a drug delivery vehicle into the target cells.
Prostate-specific membrane antigen (PMSA) has been
targeted which is an important prostate cancer marker in
patients [140]. There are two aptamer designs for two
kinds of cell lines: DUP-1 aptamer for negative prostate-
specific membrane antigen prostate cancer cells and
aptamer A10 for positive cancer cells. A dual anticancer
drug-aptamer constructs which is a combination of
doxorubicin and A10 was introduced to the prostate
cancer cells and it acted effectively. As a new therapeutic
agent, small interfering RNAs (siRNAs) have been
considered for prostate cancer therapy. siRNAs have
potential to interfere with a series of gene expression
regulation utilizing RNA interference pathway. For
effective treatment via siRNAs, safe mode of delivering is
important. Chu et al. [141] introduced an effective anti-
PSMA aptamer-siRNA conjugate with a streptavidin
bridge for prostate cancer cells (LNCaP). Also, aptamers
could be designed against cell membrane receptors and be
utilized in clinical investigations [142]. They could
improve the delivery of cancer drugs and carry their
specific loaded active drug to the target cell for
therapeutic purposes. When used as nanoparticles,
aptamers are a good choice to combat against molecular
mechanisms of drug resistance [143]. Surpassing other
chemical and molecular probes such as monoclonal
antibodies, aptamer-mediated therapy has matured in the
field of DNA hydrogels, carbon nanotubes and other
nanomaterials [144]. Zhang et al. [145] presented a new
aptamer-encapsulation system because of the expansion
of new antimicrobial drug delivery systems. Chimeric
aptamer conjugated with locked nucleic acids facilitated
the accuracy of drug delivery and targeting in the
preclinical trials [146].
Application via bioimaging

Aptamers bound to a quantum dot, fluorophore or
other materials such as gadolinium (used for MRI
measurements) are used in bioimaging. The advantage
of aptamers for bioimaging is their safety and
nontoxicity for human body because of the presence
of oligonucleotide moieties in body. Aptamers with
their high specificity for their target, rapid diffusion
through the blood stream circulation and accurate
targeting can enhance the results during clinical analysis
or diagnosis.

Based on these advantages, aptamers have been studied as
imaging agents for cell imaging as well as single-protein
imaging. C6 cell imaging has been achieved using a Cy3-
labeled AS1411 aptamer which included a chemical
modification of 5-(N-benzylcarboxyamide)-20-deoxyur-
idine (called 50-BzdU) on a thymidine base [147]. AS1411
aptamer is a specific aptamer which has been designed for
nucleolin transmembrane protein in cancer cells. In
AS1411, binding affinity to specific target is improved by
chemical modification. Cell bioimaging is chemically
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modified by Cy3-labeled AS1411 aptamer was more
efficient for C3 cells than the original Cy3-labelled
AS1411 aptamer. There are other aptamer complex such
as QD-1 and DUP-1 which are specific for PSMA (þ)
and PSMA (�) prostate cancer cells (LNCaP and PC3). It
has been shown by bioimaging that these aptamers just
bind to prostate cancer cells and not to other cancer cells
or normal prostate cells (PNT2) [148]. In addition, there
are aptamers directed against p68 liver tumours and
specific small cell lung cancer cells that also had the
potential for use as bioimaging probes [72,149,150].
Based on excellent optical properties of carbon nanodots
(e.g. emission), Lee et al. [151] decorated a new aptamer-
conjugate probe for bioimaging in cancers. Guanine
quadruplex is one type of structural DNA aptamer. A
DNA Guanine quadruplex aptamer has been used as a
stabilizer of fluorescent silver nanocluster in cell
bioimaging [152].
Western blot analysis

There are a lot of companies which produce several
antibodies against different proteins. A new western blot
strategy which uses an aptamer to detect the target protein
has been introduced making it a one-stop technique.
There is a His-tag specific quantum dots conjugate RNA
aptamer which was used in their product instead of using
two types primary and secondary of antibodies. The most
valuable benefits of their products are that they are less
time-consuming, and do not require P32 and are feasible
in multiplex detection [153]. In another study, a DNA
aptamer isolated under magnetic separation method for
thyroid transcription factor 1 was found useful when
applied in ELISA and western blot affinity purification
[154]. A series of aptamers have also been developed to
detect diverse plant virus which can be utilized in dot blot
and western blot analysis [155].
Aptamer affinity chromatography

Immunoaffinity purification is used to purify target
proteins. This technique relies on the interaction between
an antigen and an antibody. This is a common laboratory
technique in most scientific fields. Equal or superior
affinity and specificity to the target, a smaller size, higher
productivity, and better stability are all advantages of using
an aptamer in chromatography.

The small size of aptamers and their ease of use as a
conjugative-chromatographic support make them good
candidates for affinity separation in affinity chromatog-
raphy [156]. For example, a high-performance affinity
chromatography which is based on DNA aptamer against
lysozyme was developed and introduced in 2012 [157].
Romig et al. [158] developed an aptamer affinity
chromatography system for human L-selectin. The
recombinant human L-selectin-immunoglobulin fusion
protein was successfully purified from Chinese hamster
ovary cell-conditioned medium using this aptamer
affinity column [158]. Additionally, it was demonstrated
that sandwich aptamer affinity chromatography using two
aptamers improved the sensitivity and selectivity for
thrombin [156]. Another achievement in aptamer use in
affinity chromatography refers to microbead-based
affinity chromatography chip (m-BACC) which was
developed for the separation of hepatitis C virus (HCV)
RNA polymerase protein by using a mixture of RNA
aptamer-immobilized beads [159].
Conclusion

Aptamers can be developed against chemical and
biological molecules including toxins which are a feasible
and economical approach. Aptamer isolation bypasses the
in-vivo route; therefore, it is much easier to work with
aptamers compared with the commercially available
monoclonal antibodies.

Modified aptamers can be applied to various targets
especially those molecules with detection limitations with
antibodies. Aptamers can penetrate biological membranes
and the sites of immune systems that cannot be reached by
conventional techniques to interact with specific target
molecules. One of their best advantages over antibodies is
once one discloses the aptamer’s sequence, other scientists
will be able to synthesize and use it in their own research.
Altogether, aptamers have the potential to be used as
substitutes for traditional immunoserological methods to
detect targets such as microbial toxins in food matrices,
human tissues, and serum samples. They can be
introduced as a new generation of therapeutic drugs as
well as alternatives for traditional detection kits. Aptamers
also have potential to use as a drug delivery vehicle or an
engineered construct in biotechnology.
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