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Abstract In this work, we will discuss the optical properties of NiO nanoparticles that we have

investigated recently by photoluminescence (PL) spectroscopy. In particular, we will show the

blue-shifts of PL, originating from the electron–hole recombination of the self-trapped exciton

(STE), observed in smaller-sized NiO nanoparticles. To explain the size effect in relating to the

STE PL shift, a question has been raised on whether it is appropriate to apply him quantum con-

finement (QC) theory usually used for the Mott-Winner type excitons in semiconductors to wide

band-gap material, such as silica. Variations in several parameters and their effects on the structural

(crystal size and morphology) properties of nanoparticles were investigated. Characterizations were

carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal stability

(TGA and DTA), solid state UV and solid state florescent (PL).
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Tremendous amount of research effort has been made recently

for the studies of nanometer-sized materials. From industrial
point of view, it has always been a dream to reduce the size
of electronic devices. Aiming at this goal, a great deal of inter-

est in the research of nanoscale materials has been aroused.
The successful development of this nano-research will have
dramatic impact on people’s daily life. Looking at this nano-
study from an academic angle, understanding the chemical,

physical, mechanical and optical properties of nanoscale mate-
rials is bridging a gap of knowledge between free molecules
and bulk materials. In addition, important applications of

NiO include preparation of cathode materials of alkaline bat-
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teries, anti-ferromagnetic layers, and p-type transparent
conducting films (Pejova et al., 2000). Nano-structured nicke-
l(II) oxide is a p-type semiconductor metal oxide having a sta-

ble wide band gap. Also it can be used as a transparent p-type
semiconductor layer (Sato et al., 1993). Furthermore, it exhib-
its anodic electrochromism and is utilized for applications in

smart windows, electrochemical super-capacitors (Bandara
and Yasomanee, 2007; Liao et al., 2006), and dye-sensitized
photo cathodes (Liu and Anderson, 1996). However, the func-

tional properties of NiO vis-a-vis its applicability significantly
depend on pore morphology, pore matrix-interface, and also
porosity. For example, in catalytic applications the available
specific surface area should be as high as possible while for

the application as a cathode material, a dense material is desir-
able. Initial virgin powder possesses a large surface area rela-
tive to its volume. This surface area/surface energy provides

the driving force for sintering, i.e., reduction of free surface en-
ergy resulting from the high surface area of particles (Sriniva-
san and Weidner, 1997). NiO is a typical wide band-gap

insulator (the band-gap of bulk size Eg @ 3.62 eV). Therefore,
the bulk NiO-based material is characterized by high transpar-
ency in ultraviolet spectral range resulting in many important

technological applications. The properties of this bulky mate-
rial have been extensively studied for an appreciable length of
time and also been quite well established. On the other hand,
modern nanoscale technology requires the production of nano-

meter-sized NiO films and layers, which are of frequent use in
electronic devices for passivation and electrical insulation. A
typical example is the design of combined NiO systems, such

as metal–oxide-semiconductor (MOS). The thickness of NiO
layers existing in these combined systems usually ranges sev-
eral nanometers. Since the properties of NiO-based nanoscale

materials are somewhat different from those of the bulk, a
great body of investigations has recently been devoted to the
study of nanoscaled NiO-objects. Recently, the sonochemical

methods have been shown to be very promising in the prepa-
ration of a variety of materials with nanometer dimensions,
including nanochalcogenides (Wang and Gu, 2006; Xu et al.,
2006), metallic nanoparticles (Zhang et al., 2006; Lei et al.,

2007) and nano-sized metal oxides (Kumar and Kim, 2006;
Suslick et al., 1996). These materials possess improved mag-
netic properties (Zhou and Zhou, 2005), energy storage capac-

ities (Song et al., 2005; Zhu et al., 2000; Yu et al., 2002),
photocatalytic and catalytic properties (Suslick, 1998). The
ultrasonic irradiation of liquids results in acoustic cavitation.

Which, in turn, causes the formation, growth and implosive
collapse of bubbles? The implosive collapse of bubbles gener-
ates localized hot spots through adiabatic compression or
shock wave formation within the bubble gas phase. The condi-

tions formed in these hot spots include transient temperatures
of approximately 5000 K, transient pressures of about
1800 atm and cooling rates of 1010 K s�1 (He, 1999). These ex-

treme conditions attained during the bubble collapse promote
the formation of nano-phase materials with interesting proper-
ties. On the other hand ultrasonic irradiation has proven to be

a versatile and promising tool for the development of new pro-
cesses in the chemical industry (Kingery et al., 1976; Curri
et al., 2002). Its unique character predominantly arises from

acoustic cavitation, i.e. the growth and subsequent adiabatic
collapse of a microscopic cavity in a liquid, leading to a
momentary increase of temperature and pressure. These ex-
treme local conditions can cause bond breakage and free rad-
ical formation, thereby providing an alternative route for
inducing chemical reactions (sonochemistry). The NiO nano-
particles at different sizes have been characterized by X-ray

powder diffraction (XRD), photo luminescent (PL) spectra
and also the morphology and size of the nanostructures have
been observed by scanning electron microscopy (SEM). We

have performed these reactions in several conditions to find
out the role of different factors such as the aging time of the
reaction in the ultrasonic device and the concentration of the

metal acetate on the morphology of nanostructures. However,
from the most recent models concerning the QC effect in NiO
nanocrystals and radiative states associated with the NiO
interface, it is evident that the nanometer-sized NiO layer is

essential to the PL characteristics of nanoscaled NiO nanopar-
ticle systems. Even though examination of the optical proper-
ties of such extremely thin NiO sonochemical presents

considerable challenge, experimental study of NiO-based
nanomaterials by PL spectroscopy is intriguing, and spectral
analysis to understand the origins of the observed PL features

and their related dynamical mechanisms is far-reaching. In this
article, we will discuss the PL from NiO-nanoparticles that we
have investigated recently in our laboratory. In particular, we

will show the blue-shifts of PL, originating from the electron–
hole recombination of the self-trapped exciton (STE), in
smaller-sized NiO-nanoparticles that we observed by PL spec-
troscopy. To explain the size effect in relating to the blue-shifts

of STE PL, a question has been raised on whether it is appro-
priate to apply a QC model to wide band-gap material, such as
silica. In this study, a laser-heating model of free excitons

(FEs) to activate lattice phonons has been developed, rather
than the QC effect, to illuminate the blue-shifts of STE PL
in smaller-sized NiO-nanoparticles. The blue-shift resulted

from the phonon-assisted STE PL in NiO-nanoparticles
caused by the thermalization of the NiO-particle system due
to frequent collisions between FEs and nanoscale boundary

during laser irradiation.
2. Experimental

Typical procedure for preparation of NiO nanoparticles:
NaOH solution with a concentration of 0.1 M (100 ml) was
added to the 0.1 and 0.2 M solutions of Ni(CH3COO)2Æ2H2O
in ethanol/water. To investigate the role of surfactants on

the size and morphology of nanoparticles, we used 0.5 ml of
polyethylene glycol (PEG) in the reaction with optimized con-
ditions. The mixtures were sonicated for 0.5, 1 and 2 h, with

different ultrasound powers followed by centrifugation and
separation of the solid and liquid phases. The solid phase
was washed three times by ethanol and water. Finally, the

washed solid phase was calcinated at 500 �C for 30 min. Table 1
shows the conditions of reactions in detail. A multiwave ultra-
sonic generator (Bandlin Sonopuls Gerate-Typ: UW 3200,
Germany) equipped with a converter/transducer and titanium

oscillator (horn), 12.5 mm in diameter, operating at 30 kHz
with a maximum power output of 780 W, was used for the
ultrasonic irradiation. The ultrasonic generator automatically

adjusted the power level. The wave amplitude in each experi-
ment was adjusted as needed. X-ray powder diffraction
(XRD) measurements were performed using a Philips diffrac-

tometer of X’pert Company with mono chromatized Cuka
radiation. The samples were characterized with a scanning



Table 1 Experimental conditions for the preparation of NiO nanoparticles.

Sample Ni(OAC)2 NaOH (0.1 M) Aging time Ultrasound power Average size

1 25 ml (0.2 M) 100 ml 0.5 h 6–9 W 150 nm

2 25 ml (0.2 M) 100 ml 1 h 9–12 W 120 nm

3 25 ml (0.2 M) 100 ml 2 h 12–18 W 100 nm

4 50 ml (0.1 M) 100 ml 2 h 12–18 W 60 nm

5 50 ml (0.1 M) 100 ml 3 h 12–18 W 20 nm
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electron microscope (SEM) (Philips XL 30) with a gold

coating, to investigate the size distribution of the nanoparti-
cles, a particle size histogram was prepared for NiO nanopar-
ticles and most of the particles possess sizes in the range from

20 to 200 nm. The DTA and TGA data were obtained using a
PL-STA 1500 apparatus and platinum crucibles with a heating
rate of 5 �C min�1 in a static atmosphere of nitrogen. The
EDAX spectrum given in shows the presence of Ni as the only

elementary component in the NiO nanoparticles respectively.
The use of PL is a routine analytical tool in many laboratories
for impurity analysis, lattice properties and microstructure and

we propose in this paper for size analysis of NiO nanoparticles.
3. Result and discussion

3.1. Theoretical discussion

The term ‘‘nanotechnology’’ has evolved over the years via ter-
minology drift to mean ‘‘anything smaller than microtechnol-
ogy’’ such as nano powder and other things that are nanoscale

in size, but not referring to mechanisms that have been pur-
posefully built from nanoscale components. This evolved ver-
sion of the term is more properly labeled as ‘‘nanoscale bulk
technology,’’ while retaining the original meaning of nanotech-

nology. Nanophase materials generally include original mean-
ing is now properly labeled ‘‘molecular nanotechnology’’
(MNT), or ‘‘nanoscale engineering,’’ or ‘‘molecular mechan-

ics,’’ or ‘‘molecular machine systems,’’ or ‘‘molecular manufac-
turing.’’ Recently, the Foresight Institute has suggested an
alternate term to represent the nanocrystalline thin films, sin-

tered materials with an ultra-fine gain structure and loosely
aggregate nanoparticles. Size reduction affects most of the
physical properties (structural, magnetic, optical, dielectric,

thermal etc.) due to surface effects and quantum size effects.
Owing to the extremely small dimensions these materials exhi-
bit properties, which are fundamentally different from, and of-
ten superior to those of their conventional counterparts. The

interest in the study of size effect in semiconductors of reduced
dimensions (in nanometer scale) is due to their application in
solar cells, light emitting diodes, resonant tunneling devices, la-

ser catalyst etc. When the radius R of the crystallites is smaller
than �2 exciton Bhor radii, electrons and holes are considered
as two confined particles bound by an enforced coulomb inter-

action and when crystallite radius is larger than �4 exciton ra-
dii, the ground exciton is treated as a rigid sphere, confined as
a quasiparticle. In between these two limiting cases both the
electron and whole confinement and their coulomb interaction

are considered. In case of nanocrystals, the electron, holes and
exciton have limited space to move and their motion is possible
for definite values of energy. As a result, the continuum of
states in the conduction and valance band are broken down

into discrete states with energy spacing relative to band edge,
which is inversely proportional to the square of the particle ra-
dius resulting in the widening of the band gap as compared to

the bulk. Quantum dots or nanoclusters exhibit discrete elec-
tron energy levels with high oscillator strength and strong
luminescence. These systems have a very high surface to vol-
ume ratio and hence surface defects play an important role

in their properties. The main aim of present paper is to analyze
the size dispersion of nanoparticle that gives PL peak at differ-
ent energies. As the optical properties are strongly dependent

on particle size, a particle size distribution is expected to cause
inhomogeneous broadening of optical spectra. The PL spectra
often exhibit well defined peaks associated with band-edge

luminescence and recombination at defects. These are also
broadened in homogeneously due to particle size distribution;
however there have been few attempts to analyze the spectra

quantitatively. Here we will present a simple and elegant meth-
od for analysis of in homogeneously broadened band edge PL
line shape for different particle size distributions. In order to
keep the number of adjustable parameters minimum, the mea-

sured PL spectrum of bulk film is used as input. So considering
the photoluminescence arising from the recombination of car-
riers at the band-edge in the bulk of direct-gap semiconductor

with band-gap E0. The resulting line shape can be represented
by a Gaussian profile:

gbðEÞ ¼ A=C
p
2pexp½�ðE� E0Þ2=2p2� ð1Þ

where C is the parameter representing the intrinsic line width
of the PL spectrum arising from the vibronic coupling. The full
width at half maximum (FWHM) of Gaussian profile is equal
to (2.354) C. Due to quantum confinement effect, the elec-

tronic energy levels of a semi-conductor nanoparticle (quan-
tum dots) are shifted with respect to bulk. The lowest direct
inter-band transition energy of a spherical quantum dot of ra-

dius R0 has been obtained by Brus effective mass approxima-
tion as:

EðR0Þ ¼ E0 þ ðh2p2=2Þð1=m�e þ 1=m�hÞð1=R2
0Þ � ð1:8e2=e2Þ

� ð1=R0Þ þ e2=R0

X1
n¼1

aoðS=R0Þ2n ð2Þ

where m�e and m�h are the effective mass of electron and holes
respectively, e is the electron charge, e2 is dielectric constant
of medium and an is a function of dielectric constant and S

is electron–hole separation. The second term on the right hand
side of Eq. (2) represents quantum localization energy. The
third and the fourth terms correspond to coulomb potential
and the polarization energy respectively. Hence blue shift in

interband electronic transition is:



1) NaOH, H2O/EtOH
in PEG templat

))))

2) Cacination at 500 oC

NP-NiONi(OAc)2.2H2O

Scheme 1 The reaction between Ni acetate and sodium hydrox-

ide to form NiO nanoparticles.
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DEðR0Þ ¼ EðR0Þ � E0 ð3Þ

In view of the shift of the direct interband transition energy,
the PL spectrum of quantum-dot will also be shifted by same

amount. The PL spectrum for nanoparticles of radius R0 can
thus be given by:

GgdðE;R0Þ ¼ A=C
p
2pg�qdðE;R0Þ ð4Þ

If the particle size is not uniform but has a distribution the
observed spectrum of the quantum dot system can be taken as

the superposition of the contribution from each individual par-
ticle. As each particle would exhibit a peak at a position dic-
tated by its diameter, this would result in an inhomogeneous

broadening of PL spectrum. The overall line shape can be
determined by integrating gqd (E,R) over size distribution
P(R) as:

GðEÞ ¼
Z

PðRÞ:gqdðE:RÞdr ð5Þ

In order to keep calculation simple, the distribution P(R) is
taken to be Gaussian with mean R0 and standard deviation rR.

PðRÞ ¼ ð1=rR

p
2pÞexp½�ðR� R0Þ2=2r2

RÞ�
¼ 1=rR

p
2pP�ðRÞ ð6Þ

Therefore:

GðEÞ ¼ ðA=2prRCÞRðR ¼ R0 � 3rR toR

¼ R0 þ 3rRÞ½P�ðRÞgdbðE:RÞ�dr

GðEÞ ¼ FRðR ¼ R0� 3rR toR

¼ R0þ 3rRÞ½P�ðRÞg�dbðE:RÞ�dr ð7Þ
Figure 2 The solid state UV absorption of NiO nanoparticles at

different size (a) 150 nm, (b) 120 nm, (c) 100 nm, (d) 60 nm, (e)

20 nm and (f) bulk size.

Figure 1 The TGA/DTA spectra of NiO nanoparticles (sample

is random selectived size of 100 nm).
3.1.1. PL peak broadening in NiO nanoparticles

Using Eq. (1) the line shape of bulk NiO can be obtained by
substituting the constants for NiO. The constants that have
been taken in present calculations are C = 0.1 and
E0 = 2.70eV. The value of A has been taken by, considering

the maximum PL intensity, as unity i.e.:

A=2pCrR ¼ 1 and C ¼ 0:1

A= 0.30. Therefore this gives:

gbðEÞ ¼ ð0:30=
p
2� 3:14� 0:1Þexp½�ðE� 2:70Þ2=2ð0:1Þ2�

For nanoparticles of average size 2 nm, E(R) is first evaluated
with the help of Eq. (2). Now gb(E) is calculated for different

values of E = 2.0, 2.1,. . ., 3.8. Now by using Eq. (4), the line
shape of mono disperse NiO can be obtained by substituting
value for rR ¼ 0:0001;m�e ¼ 0:29;m�h ¼ 0:75; e2 ¼ 6:7; e ¼ 1:9
�10�19C; h ¼ 7:70� 10�34J� S. To calculate the value for
gqd (E,R) it is necessary to find the value of E(R0) as shown
below

EðR0Þ ¼ E0 þ ðh2p2=2Þð1=m�e þ 1=m�hÞð1=R2
0Þ � ð1:8e2=e2Þ

� ð1=R0Þ þ e2=R0

X1
n¼1

aoðS=R0Þ2n

Here we see that for calculating E(R0), last term is ne-

glected because its calculation is not straight forward.

EðR0Þ ¼ 2:43þ ðh=2pÞ2ðp2=2Þð1=2:0þ 1=1:1Þð1=2:2� 10�19

� 9:1� 10�31 � 10�18 � R2
0Þ � ð1:8e2=e2Þð1=R0Þ
Now,

e2 ¼ 4pe0er ¼ 6:7� 4pe0; but 4pe0ð107=c2Þ

Therefore:

ðE;R0Þ ¼ 3:2þ ð3:3=R2
0Þ � ð0:877=R0Þ



Figure 3 (a) Typical SEM micrographs of NiO nanoparticles at 150 nm size after calcinations. (b) Typical SEM micrographs of NiO

nanoparticles at 120 nm size after calcinations. (c) Typical SEM micrographs of NiO nanoparticles at 100 nm size after calcinations. (d)

Typical SEM micrographs of NiO nanoparticles at 60 nm size after calcinations. (e) Typical SEM micrographs of NiO nanoparticles at

20 nm size after calcinations.
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From reported results it is found NiO with radius 1–4 nm
the polarization term is typically one third of coulomb term
with opposite sign. Therefore,

ð0:3130=RÞ ¼ ð0:56=RÞ � ð0:56=3RÞ

For NiO the value of R0 = 2 nm,

Eð2Þ ¼ 3:2þ ð3:3=22Þ � ð0:3130=2Þ ¼ 4:61eV

Substituting the value of C, A and E(R0), for different val-
ues of E, gqd(E,R0) is calculated by Eq. (4) NiO.

Using Eqs. (2) (4) (6) and (7), the line shape of polydisperse

NiO can be obtained by substituting the constants for NiO
nanoparticles. Following constants are in present calculation.

ðrR=R0Þ ¼ 25%; ða=2pCrRÞ ¼ F ¼ 0:9; dR ¼ 0:2;

R ¼ 0:5 to 4nm
Substituting the above values in Eq. (7), P* (R) is calcu-
lated for different values of R= 0.5 to 4 nm. Similarly E(R)
is calculated by Eqs. (8) and (9) energy R = R0 + 3rR for

different values of R = 0.5 to 4 nm. Then g�qd (E.R) is calcu-
lated by Eq. (4) for different values of E. Substituting the va-
lue P*(R) and g�qd (E.R) for specific value of R and E in Eq.

(6). Substituting dR = 0.2, [(a/2pCrR) = 0.8] we get differ-
ent values of g�qd (E,R)XP*(R)XFXdR. The Eq. (5) for NiO
is given by [polydisperse] (Zhang et al., 2006; Sun, 2002; Ku-
mar and Kim, 2006; Srinivasan and Weidner, 1997; Kingery

et al., 1976).

ðrR=R0Þ ¼ 15%; ðA=2pCrRÞ ¼ F ¼ 1:3; dR ¼ 0:1;

R ¼ 1:1 to 2:9nm



Figure 4 The X-ray powder diffraction pattern of NiO nano-

particles (a) NiO at 150 nm, (b) NiO at 120 nm, (c) NiO at 100 nm,

(d) NiO at 60 nm, (e) NiO at 20 nm and (f) NiO at bulk size.

Figure 6 The EDAX analysis of NiO nanoparticles and bulk size

(a) 150 nm, (b) 120 nm, (c) 100 nm, (d) 60 nm, (e) 20 nm and (f)

bulk size.
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3.2. Experimental discussion

The reaction between Nickel acetate and sodium hydroxide to
form NiO nanoparticles has been shown in Scheme 1.

Various conditions for preparation of NiO nanostructures
were summarized in Table 1.

In order to reveal the changes that occurred during heat

treatment of the precursor powders, TG and DTA analyses
were carried out from 25 to 600 �C in atmosphere (see
Fig. 1). According to the TG curve, the major part of the

weight loss seems to occur below 350 �C. DTA curve shows
an endothermic peak at about 121 �C, corresponding to the
evaporation of the absorbed water. An exothermic peak at
approximately 314 �C occurs in DTA, which might be associ-

ated with the conversion of precursor into NiO and also the
decomposition of the organic residues. The reaction is com-
pleted by 450 �C. Therefore, we choose 450 �C as the calcine

temperature.
When the semiconductor particles are sufficiently small and

the radius of the particle approaches the radius of the first ex-

cited-state orbital of the conduction band electrons, the so-
called quantum-size effects are observed. With reduction in
particle size, the band gap of the semiconductor becomes larger
and there is a concomitant blue shift in the absorption
Figure 5 Particle size histogram of NiO with different size (a)

150 nm, (b) 120 nm, (c) 100 nm, (d) 60 nm and (e) 20 nm.
spectrum. The UV–Vis spectra of NiO nanoparticles are shown

in Fig. 2. It is noticed the phenomenon of the blue shift, with the
decrease of R value, which is an evidence of quantum confine-
ment effect, which implies that with the increase of R value the
particles size became larger.

The solid state UV–Vis spectrum of nanoparticles and NiO
at bulk size displays an absorption band with maximum inten-
sity at 360 nm Fig. 2(a–f), whereas NiO nanoparticles display

one absorption sharp band with maximum intensity at
365 nm. But the bulk NiO powders have very limited UV
absorbance, and absorbance in the UV region is enhanced with
Figure 7 The solid state PL analysis of NiO nanoparticles at

different size (a) 150 nm, (b) 120 nm, (c) 100 nm, (d) 60 nm, (e)

20 nm and (f) bulk size. (kex = 360 nm).



Figure 8 The solid state PL analysis of NiO nanoparticles at

different size (a) 150 nm, (b) 120 nm, (c) 100 nm, (d) 60 nm, (e)

20 nm. (kex = 460 nm).
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the NiO nanoparticles at different sizes due to its high energy
gap. Nanoparticles under 200 nm have better transmission of
visible light compared to NiO at bulk size. The optical absorp-

tion peak intensity is found at 3.39 eV (365 nm). From the
curve we can calculate the band gap (Eg) energy of the sample
by the following equation:

ðahmÞn ¼ Bðhm� EgÞ

where hm is photo energy, a is absorption coefficient, B is a

material constant and n is either 2 for a direct band gap mate-
rial or ½ for an indirect band gap materials that we know NiO
is a direct band gap type semiconductor. A typical SEM image

in Fig. 3 showed the morphology and size of the NiO nanopar-
ticles prepared by sonochemical method with different R val-
ues. It follows that the average size of the nanoparticles

increased with increasing R value. The morphology, structure
and size of the samples are investigated by scanning electron
microscopy (SEM). Fig. 3(a–e) indicates that the original mor-
phology of the NiO nanoparticles is approximately spherical

with the diameter varying between 10 and 200 nm. This is con-
sistent with the UV–Vis spectra results. The best morphology
with smaller particles and good distribution was obtained for

the samples summarized. Fig. 4(a–f) shows the XRD patterns
of the direct sonochemically synthesized NiO nanoparticles
respectively. Sharp diffraction peaks shown in Fig. 4 indicate

good crystalline of NiO nanoparticles. No characteristic peak
related to any impurity was observed. The broadening of the
peaks indicated that the particles were of nanometer scale.

To investigate the size distribution of the nanoparticles, a

particle size histogram was prepared for NiO nanoparticles,
Fig. 5(–e). For further demonstration the EDAX was per-
formed for the NiO nanoparticles. The EDAX spectrum given

in Fig. 6(a–e) shows the presence of Ni as the only elementary
component in the NiO nanoparticles respectively. Bulk and
nanoparticle powder of NiO at different sizes was analyzed

by solid state photo-luminescent (PL) spectrum for prepara-
tion of their emissions. The PL can be produced from sources
such as quantum confinement and surface states. On the other
hand photoluminescence spectroscopy is usually used to mea-
sure the band-gap energy of semiconductors. Therefore, we fo-

cus on the photoluminescence spectrum of NiO semiconductor
nanoparticles in this study. NiO at bulk size exhibits one fluo-
rescence emission maxima at 454 nm upon photo excitation at

360 nm (Fig. 7(a–f)). Compared to the fluorescence signals of
nanoparticles of NiO at different sizes two fluorescence emis-
sion maxima at 455 (2.72 eV) and 485 nm (2.55 eV) for

150 nm, 460 nm (2.69 eV) and 495 nm (2.50 eV) for 120 nm,
465 nm (2.66 eV) and 505 nm (2.45 eV) for 100 nm, 465 nm
(2.66 eV) and 525 nm (2.36 eV) for 60 nm and 465 (2.66 eV),
538 (2.30 eV) and 547 nm (2.26 eV) for 20 nm. The fluores-

cence spectra of nanoparticles with kexc = 360 nm are shown
in Fig. 7(a–f). Hexagonal phase NiO nanoparticles at different
sizes exhibit the same emission position at 454 nm for bulk size

of NiO and 485 nm for NP-NiO at 150 nm in 485 nm, for NP-
NiO at 120 nm in 495 nm, for NP-NiO at 100 nm in 505 nm,
for NP-NiO at 60 nm in 525 nm and for NP-NiO at 20 nm

in 538 and 547 nm. Therefore, we can observe that decrease
in the size of nanoparticles from 150 to 20 nm causes decrease
in the photoluminescence (PL) spectral energy. However, the

emission intensity of NP-NiO nanoparticles with different sizes
is greater than that of bulk size of NiO powders. Is the differ-
ence of the emission intensity due to the size or morphology?
To investigate the reason, the contradistinctive experiment

was carried out under sonochemical condition. It indicates that
the emission intensity of NP-NiO with different sizes is greater
than that of bulk size of NiO. This suggests that the size is the

main factor leading to the difference of emission intensity. It is
thought that the difference of the emission intensity likely de-
pends on their variation size and morphology. The fluores-

cence spectra clearly suggest that nanoparticles of NiO are a
son ably luminescent material and probably this property
can be exploited for possible future applications. The fluores-

cence spectra of nanoparticles with kexc = 460 nm are shown
in Fig 8(a–f). In this case the PL spectra have a single peak,
with nearly broad full width at half maximum (FWHM).
These peaks located in 2.57 eV for 150 nm particle size,

2.50 eV for 120 nm, 2.45 eV for 100 nm, 2.36 eV for 60 nm,
2.30 eV for 20 nm of NiO particle size. The intensity of PL
spectrum gradually increases from 150 to 20 nm particle size

and the energy band gap decreases from 150 nm to 20 nm of
NP-NiO for kexc = 460 nm. In other words, the blue shift oc-
curs due to reduced size of NP-NiO.

4. Conclusion

Many workers have reported band to band PL for a number of

materials. In case of nanocrystals the PL peak is observed at
same energy as the absorption edge shifts toward shorter wave-
length for smaller particles. In general it is difficult to obtain
monodisperse particles and PL spectrum can be taken as

superposition of the contribution from each individual nano-
particle. The effect of particle size distribution of semiconduc-
tor nanoparticles on the band-edge photoluminescence

spectrum is investigated. The calculations show inhomoge-
neous broadening of PL line shape. The measured PL spec-
trum which exhibits peaks arising from band-edge

luminescence and recombination at defects can be analyzed
by fitting the calculated line shape to it. Thus, the overall
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behavior of PL spectrum is strongly affected by the size distri-
bution of nanoparticles.

In summary we suggest that the PL spectrum is the simple,

straight and inexpensive method for preparation of size in
nanoparticles of NiO. Nanoparticles of NiO are various emis-
sions responsive they size and morphologies. However the dif-

ferent sizes of nanomaterials have various emissions in PL
spectra and this demonstrates that photoluminescence spec-
troscopy can be a powerful method for grading of NiO

nanoparticles.
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