
Introduction
The popularity of epoxides is both due to their ability in 
forming applicable intermediates and their roles as a building 
block in organic synthesis. Epoxides have a great tendency 
for further derivatization,1 thus can readily react with halides, 
carbon, nitrogen, oxygen or sulfur nucleophiles leading to a 
variety of outcomes and various functional groups such as 
alcohols, diols, aldehydes, alkanes, alkenes and ketones.

Because of the ring strain and intrinsic reactivity of the 
epoxides ring, these compounds are valuable intermediates in 
the production of high-value chemicals like pharmaceuticals. 
Reaction of epoxides with various nucleophiles can afford 
1,2-difunctional products. Among these, 1,2-diols and vicinal 
diacetates possess valuable synthetic utilities. They are among 
the most important precursor for a wide range of biologically 
active natural and synthetic products.2

Generally, nucleophilic ring opening of epoxides leads to 
1,2-diol products, and the subsequent acetylation provides 
vic-diacetates. Due to simplicity and higher yields of one-pot 

procedures, more attention is focused on the synthesis of vic-
diacetates in one step and in the presence of various catalyst. 
There are different reports on conversion of epoxides to vic-
diacetates in the presence of various types of catalysts naming 
erbium (III) triflate,3 4 Å molecular sieves,4 ammonium-12-
molybdophosphate,5 zirconyl triflate,6 phosphomolybdic acid 
with and without silica gel support,7 LiClO4,

8 Bu3P,9 zeolite10 
and NaBH4, LiAlH4, CaH2 hydride transfer agent.11

To the best of our knowledge there is no report on epoxide 
conversion to vic-diacetates involving TiO2 (anatase) 
nanoparticles (NPs), while it has been applied as catalyst 
for conversion of epoxides to β-amino alcohols12 and also in 
various reactions including sulphur oxidation,13 Hantzsch 
esters synthesis,14 oxindole derivatives synthesis,15 hydrogen 
production,16 carboxymethylation and methylation of 
bisphenol A17 and also dye degradation by polymer, and metal 
ion modified titanium dioxide.16,18-21

Nanocrystalline TiO2 has also been applied as solid support 
for deposition of different catalyst acting as a carrier for 
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metals and metal oxides.22,23 Due to different advantages of 
this nanostructure, it can be considered as an efficient catalyst 
in ring opening of epoxides to vic-diacetates. It is one of the 
transition metal oxides and a promising semiconductor that 
exists in 3 crystalline forms; anatase, rutile and brookite, with 
band gaps of 3.2, 3.02, and 2.96 eV respectively. Rutile phase 
is the most thermally stable among the 3 phases, Brookite and 
anatase experience a phase transformation and convert into 
the rutile phase above 600°C.24,25

Due to high physical and chemical stability of TiO2 in 
alkaline and acidic conditions, this semiconductor is widely 
researched.26 Titanium dioxide can be utilized in several 
fields, including solar cells, photocatalyst, sensors, and self-
cleaning.27,28

 In this context, we report one-pot procedure for conversion 
of epoxides to corresponding vic-diacetates catalyzed by nano-
sized titanium dioxide (anatase). Although TiO2 is extensively 
applied in photo-induced and degradation reactions, due to 
its advantages including rather low-cost, photo stability, 
reusability, non-toxicity, which can be in accord with green 
chemistry principles, as well as its high stability in alkaline 
and acidic medium and high surface area, it was selected 
as heterogeneous catalyst for conversion of epoxides to 
the corresponding vic-diacetates in the presence of acetic 
anhydride (Scheme 1). 

Materials and Methods
All the chemicals and reagents were purchased from Merck and 
Fluka companies and were used without further purification. 
The purity determination of the substrates and progress of 

reactions was monitored by a thin layer chromatography 
(TLC) on silica gel polygram SILG/UV 254 plates and gas 
chromatography (GC) Varian CP-3800 with FID detector and 
capillary column. Scanning electron microscope (SEM) was 
performed with a PHILIP XL-30, operated at 30 kV. X-ray 
diffraction (XRD) was conducted on a Philips Analytical 
XPERT diffractometer using a Cu Kα radiation (λ = 1.54056 
A°) with a MINIPROP detector and operating at 40 kV and 40 
mA. NMR and FT-IR spectra were recorded with Bruker 250 
MHz and Bruker Vector 22 instrument respectively.

Generally, for synthesis of vic-diacetates in the presence of 
TiO2 nanoparticles in a round-bottomed flask (25 mL), 0.05 
mmol TiO2 NPs was added to a solution of epoxide (1 mmol) 
and acetic anhydride (3 mL) and the reaction mixture was 
stirred in 100°C oil bath. The progress of the reactions was 
monitored by TLC and GC. After desired time (Table 1), an 
aqueous solution of NaOH (5%) was added to the mixture, 
and stirring continued for additional 10 minutes. The mixture 
was then extracted with ethylacetate (2 × 15 mL) and organic 
layers were dried over sodium sulfate. After removal of the 
solvents by rotary evaporator, the as obtained 1,2-acetyldiols 
were identified by the available techniques.

Table 1. Reaction of Epoxides to Vicinal Diacetates With Nano Titanium Dioxides in Acetic Anhydride
R1

O +  Ac2O
 
TiO2

 
(anatase)

 
NPs (0.05 mmol)            

100 °C
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AcO

OAc
R2
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Entry Epoxide (a) Product (b) Time (h:min) Conversion (%)a Yield (%)b
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 4 98 92

9 O
O

O
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3:30 97.5 93

10 O
OAc

OAc
2:30 98 89

a Conversion is reported according to GC results. b Yields refer to isolated pure products.

 

Scheme 1. TiO2 (Anatase) NPs Catalyzed Synthesis of vic-Diacetates.
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Ethical Considerations 
This study was approved by the Zanjan  University Ethics 
Committee.

Results
FTIR Analysis
This analysis is used to confirm functional groups in desired 
structure. In Fourier-transform infrared spectroscopy (FTIR) 
of TiO2 nano powder (Figure 1), Broad peak at 3356 cm-1 and 
a sharp peak at 1617 cm-1 are related to stretching vibrations 
of O-H and bending vibrations of adsorbed water molecules 
respectively. The broad intense peak at 903.79 cm-1 is also due 
to Ti-O-Ti vibration.26

XRD Analysis
The crystal structure of the titanium dioxide NPs was also 
characterized by XRD measurement. Figure 2 shows the XRD 
pattern of TiO2 nano powder. The sharp peaks at 25, 39, 49, 
55, 63 and 70 confirm the existence of anatase phase as the 
major phase, which coincides with JCPD 89-4921 standard.

SEM and EDS Analysis
SEM analysis was used to characterize general morphology 
and Size distribution of TiO2 NPs. The SEM image reveals the 
spherical shape of TiO2 nano powder with less than 100 nm in 
size (Figure 3). EDS spectrums of the TiO2 is shown in Figure 4. 
This technique is used for quantitative analysis of the samples, 

in fact existence of expected atoms can be confirmed by EDS 
mapping. In EDS elemental spectra of titanium dioxides only 
titanium and oxygen peaks exist, which confirms high purity 
of titanium dioxide NPs.

Epoxides Ring Opening in the Presence of TiO2 NPs and 
Acetic Anhydride
A variety of epoxides with diverse structures and different 
functional groups were selected and almost all the products 
were formed in high yields, in less than 4 hours (Table 1). In a 
typical procedure, the ring opening different types of epoxides 
(1 mmol) were achieved in the presence of TiO2 (anatase) NPs 
(0.05 mmol) and acetic anhydride (3 mL). All the reactions 
were set at 100°C and the desired vicinal diacetates products 
were obtained in 88%-92% yields and the color of almost all 
the products were in pale yellow. The progress of the reactions 
was monitored by TLC and GC chromatography was applied 
for isolation of product. In order to show the effect of TiO2 
surface in catalytic reactions,12 applied native TiO2 and 
hexadecyltrimethoxysilane modified titanium dioxide in ring 
opening of epoxides.
The spectral data of synthesized vicinal diacetates are given 
below.
1,2-Diacetoxy-1-phenylethane (1b) 
1HNMR (250 MHz, CDCl3): δ = 2.02 (s, 3H), 2.05 (s, 3H), 
4.25-4.45 (m, 2H), 5.96-6.15 (dd, J= 4.2, 7.8 Hz, 1H), 7.23-
7.46 (m, 5H); 13C NMR (63 MHz, CDCl3): δ = 20.83, 21.05, 
66.08, 73.32, 126.93, 128.39, 129.01, 136.22, 170.00, 170.58; IR 
(cm-1): 3033, 2954,1744, 1604, 1455, 1372, 1241, 1046, 1012, 
950.

Figure 1. FTIR Spectra of TiO2 NPs.

Figure 2. XRD Patterns of TiO2 Nano Powder. Figure 3. SEM images of TiO2 NPs 
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Vicinal diacetoxy-3-phenoxypropane (2b)
1H NMR (250 MHz, CDCl3): δ (ppm): 7.32–7.25 (m, 2H), 
6.99–6.89 (m, 3H), 5.41–5.34 (m, 1H), 4.43 (dd, J 3.9, 12 Hz, 
1H), 4.29 (dd, J 6, 12 Hz, 1H), 4.11 (d, J 5.1 Hz, 2H), 2.09 
(s, 3H), 2.06 (s, 3H); 13C NMR (63 MHz, CDCl3) δ (ppm): 
170.57, 170.26, 158.53, 129.27, 121.36, 114.59, 69.76, 65.96, 
62.54, 20.92, 20.70; IR (cm-1): 3041, 2957, 1746, 1600, 1588, 
1497, 1371, 1228, 1050.
Vicinal diacetoxy-3-isopropoxypropane (3b)
1H NMR (250 MHz, CDCl3) δ (ppm): 5.15–4.96 (m, 1H), 4.28 
(dd, J 3.6, 12 Hz, 1H), 4.12 (dd, J 3, 12 Hz, 1H), 3.58–3.40 (m, 
3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.09 (d, J 6 Hz, 6H); 13C NMR 
(63 MHz, CDCl3) δ (ppm): 170.68, 170.34, 72.32, 70.59, 66.12, 
63.00, 21.91, 21.84, 21.00, 20.74; IR (cm-1): 2918, 2849, 1743, 
1463, 1371, 1229, 1118, 1047.
Vicinal diacetoxycyclohexane (4b)
1H NMR (250 MHz, CDCl3) δ (ppm): 4.79–4.5(m, 2H), 1.94 
(s, 3H), 1.93 (s, 3H), 1.69–1.62 (m, 4H),1.36–1.16 (m, 4H); 13C 
NMR (63 MHz, CDCl3) δ (ppm): 172.31, 73.49, 30.16, 23.25, 
21.17; IR (cm1-): 2942, 2866, 1739, 1452,1368, 
1251, 1042.
1,2-Diacetoxyhexane (5b)
1H NMR (250 MHz, CDCl3): δ = 0.85 (t, 3H), 1.48-1.51(m, 
2H), 1.53-1.55 (m, 2H), 2.04 (s, 3H), 2.06 (s, 3H), 3.35-3.42 
(m, 2H), 4.10-4.33 (m, 2H), 5.12-5.16 (m, 1H); 13C NMR (63 
MHz, CDCl3): δ = 13.81, 19.15, 20.72, 20.99, 31.53, 62.92, 
68.79, 70.27, 170.32, 170.64; IR (cm-1): 2960, 2873, 1746, 1459, 
1372, 1225, 1120, 1049, 961, 896, 843.
Vicinal diacetoxy-3-chloropropane (6b)
1H NMR (250 MHz, CDCl3) δ (ppm): 5.25–5.13 (m, 1H), 
4.37–4.1 (m, 2H), 3.75–3.55 (m, 2H), 2.09 (s, 3H), 2.07 (s, 
3H); 13C NMR (63 MHz, CDCl3) δ (ppm): 170.49, 170.41, 
70.39, 62.36, 42.10, 20.86, 20.79; IR (cm-1): 2963, 1744, 1436, 
1371, 1221, 1046.
(2,3- Diacetoxy propyl) Methacr ylate (7b)
1H NMR (CDCl3, 250 MHz) d 6.10–6.04 (m, 1H), 5.55–5.54 
(m, 1H), 5.30–5.16 (m, 1H), 4.33–4.05 (m, 4H), 2.02 (s, 
3H), 2.00 (s, 3H), 1.87 (s, 3H); 13C NMR (CDCl3, 63 MHz) 
d 170.41, 170.03, 166.66, 135.65, 126.37, 69.28, 62.39, 62.23, 
20.76, 20.57, 18.13; IR (cm-1): 2988, 2880, 1720, 1638, 1453, 

Figure 4. EDS Spectrum of TiO2 NPs. 

1372, 1320, 1296, 1166, 1077, 1055.
Bis (3,4- diacetoxybuthane) (8 b)
1H NMR (250 MHz, CDCl3) δ (ppm): 1.27-1.43 (4H, 1.35 
(tt, J = 7.4, 7.0 Hz), 1.35 (tt, J = 7.4, 7.0 Hz)), 1.46-1.58 (4H, 
1.52 (td, J = 7.4, 7.1 Hz), 1.52 (td, J = 7.4, 7.1 Hz)), 2.05-2.06 
(12H, 2.06 (s), 2.05 (s)), 4.40-4.44 (4H, 4.42 (d, J = 7.2 Hz), 
4.42 (d, J = 7.2 Hz)), 4.74 (2H, tt, J = 7.2, 7.1 Hz); 13C NMR 
(63 MHz, CDCl3) δ (ppm): 170.6, 75.2, 65.9, 21.0. 
Vicinal diacetoxy-3-allyloxypropane (9b)
1H NMR (250 MHz, CDCl3) δ (ppm): 5.92–5.76 (m, 1H), 5.27 
(dd, J 1.5, 17.4 Hz, 2H), 5.21 (dd, J 3, 17.4, 1H), 5.20–5.12 (m, 
1H), 4.32 (dd, J 3.9, 12 Hz, 1H), 4.15 (dd, J 6.3, 12 Hz, 1H), 
4.05–3.91 (m, 2H), 3.55 (d, J 5.1 Hz, 2H), 2.07 (s, 3H), 2.03 
(s, 3H); 13C NMR (63 MHz, CDCl3) δ (ppm): 172.08, 172.16, 
132.12, 119.03, 71.09, 70.21, 69.87, 62.80, 20.94, 20.67; IR (cm-

1): 2957, 2868, 1743, 1433, 1372, 1225, 1092, 1048.
Vicinal diacetoxycyclopantane (10 b)
1H NMR (250 MHz, CDCl3) δ (ppm):1.59-1.76 (2H, 1.70 
(dtt, J = 13.4, 5.4, 1.4 Hz), 1.67 (dtt, J = 13.4, 9.4, 5.3 Hz)), 1.80-
1.96 (4H, 1.88 (dddd, J = 9.4, 8.2, 7.6, 5.4 Hz), 1.90 (dddd, J = 
8.2, 7.0, 5.3, 1.4 Hz)), 2.06 (6H, s), 5.16 (2H, ddd, J = 8.1, 7.6, 
7.0 Hz); 13C NMR (63 MHz, CDCl3) δ (ppm): 75.6, 24, 32.7, 
21, 16.9.

Discussion
The results revealed that modified titanium dioxide led 
to fewer yields, which can be due to the steric hindrance 
and blocking the contact between the reactants and TiO2 
surface. The results confirm the important role of titanium 
dioxide surface in gaining higher yields, so in the current 
study in order to increase active surface area, nano-sized 
titanium dioxide was selected and no modification was made. 
Analysis of the product obtained from cyclohexene oxide and 
cyclopantene oxide acetic anhydride in the presence of acetic 
anhydride and TiO2 NPs catalyst resulted in exclusively the 
corresponding trans-vic-diacetates (Table 1- entry 4, 10). In 
large-scale operations and an industrial point of view, catalyst 
reusability is of great importance. Since titanium dioxide can 
be separated from the reaction mixture by centrifugation, 
reusability of the catalyst was investigated in four cycles. 
The yields obtained from the recovered catalyst, revealed 
negligible loss of catalytic ability of TiO2 NPs after 3 cycles. 
For example, the reaction of cyclohexene oxide with acetic 
anhydride Cause the synthesis of product vicinal diacetates 
cyclohexane in 99%, 98% and 98%, according to GC results. 
Increasing the number of recoveries causes tangible decrease 
in yields, which can be due to aggregation of TiO2 NPs and 
loss of surface area. TiO2 (anatase) NPs is able to afford vic-
diacetates in better yields and lower catalyst amounts than the 
most efficient reported method (Table 2).

Conclusions
In brief, the current work represents an efficient procedure 
for one-pot conversion of structurally different epoxides to 
the corresponding vic-diacetates. Commercially available 
TiO2 (anatase) NPs, a rather cheap, heterogeneous, non-
explosive and environmentally benign catalyst was applied to 
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promote the reactions. Reaction of different epoxides was set 
in the presence of catalytic amount of nano titanium dioxide 
and acetic anhydride in oil bath (100°C). Simple and mild 
reaction conditions, easy catalyst recovery, high yields and 
rather short reaction time, are considered as advantages of 
present protocol.
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