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Abstract 

Autophagy is a very tightly regulated process that is important in many cellular 

processes including development, differentiation, survival, and homeostasis. The 

importance of this process has already been proven in numerous common diseases 

such as cancer and neurodegenerative disorders. Emerging data indicate that 

autophagy plays an important role in some liver disease including liver injury induced by 

ischemia reperfusion and alpha-1 antitrypsin Z allele dependent liver disease. 

Autophagy may also occur in viral infection, and it may play a crucial role in 

antimicrobial host defense against pathogens, while supporting cellular homeostasis 

processes. Here the latest findings on the role of autophagy in viral hepatitis B and C 

infection, which are both serious health threats, will be reviewed. 
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Introduction 

Chronic viral hepatitis infection represents a major public health problem worldwide (1, 

2). It  can be caused by several viruses, the most widespread being  hepatitis B and C 

viruses (HBV and HCV, respectively) (3). Hepatitis B and C may cause chronic liver 

infection that can lead to liver fibrosis and ultimately develop to liver cirrhosis and 

primary liver cancer. Current understanding of these  infections has been advanced by 

studies of the mechanisms  of liver fibrosis . Fibrosis was  considered a progressive 

linear event but clinical evidence now suggests that fibrosis progression does not 

always have a fixed speed, but instead  can have  slower or rapid phases(4). We have 

recently shown a direct link between autophagy and fibrosis in different systems 

(Ghavami and Halayko unpublished data) including in different viral infections (5-7). 

Here we focus on and review the importance of autophagy in viral hepatitis B and C 

infection and discuss some future possible targets for viral hepatitis B and C therapeutic 

strategies. 

 

Epidemiology of HBV and HCV in the world 

At the beginning of the third millennium, HBV infection poses a great burden on health 

systems around the world (8, 9), 350–400 million suffering from this infection (10). It has 

been identified as one of the most important causes of liver failure and hepatocellular 

carcinoma (HCC) (11). HBV can be transmitted parenterally by percutaneous and 

mucous membrane exposures to infected blood, sexual contact or perinatal exposure 

(12, 13). 
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The World Health Organization (WHO) has compared hepatitis C virus (HCV) to 

a “viral time bomb” and estimates that about 180 million people (around 3% of the 

world’s population) are infected with HCV, 130 million of whom are chronic carriers at 

risk of developing liver cirrhosis and liver cancer (14). The main risk factors for HCV 

infection are blood and blood product transfusion, intravenous drug use, unsafe 

injections, tattooing and poor instrument disinfection by barbers, and rarely sexual 

contact. Haemodialysis, thalassaemia and haemophilia patients are at higher risk of 

HCV infection (9, 15, 16). 

 

Natural history and progression of HBV and HCV to cirrhosis and HCC 

Hepatitis B virus infection has two presentations; acute, which occurs less than 6 

months after acquiring the infection and is symptomatic, and the chronic phase of 

infection, which occurs more than 6 months after initial infection. HBV infection can be 

divided temporally into different stages after initial acquisition. The first stage is 

characterized as immune-tolerance (17).  In the second phase, the immune response 

becomes active and leads to cytokine release and cell lysis and an inflammatory 

infiltrate accumulates (10). The progression of HBV infection and the evolution of the 

various phases depends on host genetic factors and molecular characteristics of HBV 

such as genotype and presence of viral mutations (18). 

The natural history of HCV infection is totally different from HBV infection. 

Approximately 20% of individuals spontaneously clear the infection. Again there are 

viral and host factors that determine HCV clearance or persistence(19). Host genetic 

variation has been shown to contribute to the heterogeneity in HCV clearance and rate 
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of response to antiviral therapy (20, 21). About 30% of individuals with persistent 

infection develop chronic liver disease, such as cirrhosis and hepatocellular carcinoma 

(22).  

HBV and HCV classification and structure 

HBV 

Classification and Structure 

 HBV belongs to the Hepadnaviridae family. These viruses are characterized by having 

a partial double-stranded DNA genome, with numerous overlapping genes in multiple 

reading frames, which is copied through an RNA intermediate by a reverse 

transcriptase enzyme. HBV infects primarily hepatocytes. For more complete reviews, 

see (23-25). The HBV, also known as the Dane particle, is approximately 45nm in 

diameter. The HBV genome is a circular DNA molecule of approximately 3200 

nucleotides (Fig. 1A) that encodes 3 different-sized envelope proteins (HBsAg) as well 

as several other structural and non-structural proteins (Fig. 1B, Table 1). At least one of 

the non-structural proteins (HBx) has been suggested to have a role in autophagy. Tang 

and colleagues found that HBx was involved in up-regulation of beclin-1 expression 

during starvation-induced autophagy (26). Sir and colleagues demonstrated that HBV 

infection induced early autophagy in the absence of autophagic protein degradation, 

that autophagy enhanced HBV replication and that this was mediated by interaction 

between HBx and PI3KC3 to enhance the latter’s activity (27). Other recent work by Li 

and colleagues has confirmed that HBV induces autophagy and that this induction aids 

virus replication. However, Li et al demonstrated, using a different vector construct and 
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different virus types, that the smallest structural envelope protein (SHBs) also has roles 

in autophagy by promoting endoplasmic reticulum stress and virion envelopment (28). 

 

Figure 1. (A). Map of the HBV genome. The viral genome consists of a full-length 
circular (-) sense DNA strand complexed with a shorter, partial (+) sense DNA strand. 
The shorter (+) sense strand, of varying length, is indicated by the wide dashes between 
map positions ~ 300 – 600nt. The (+) sense strand also contains a short ~ 170nt 
oligoribonucleotide tail, indicated by the dotted line at map position ~ 1300. The viral 
polymerase protein (indicated by the hatched oval) binds to the 5’ end of the (-) sense 
strand. The genome contains short direct repeats (DR1, DR2). Open reading frames 
(orf) are indicated by various arrows. Different reading frames are indicated by arrow 
distance from center. Precise locations of each protein, denoted by different fill patterns, 
are indicated in Table 1 for the HB056 strain; GenBank # HM011465. 
(B) Cartoon of HBV virion. The viral genome (innermost single / double line) and 
genome-bound  polymerase, is encased in an icosahedral shell composed of HBcAg. 
This core is surrounded by a host-derived lipid bilayer (double circular line) in which are 
embedded the 3 different sizes of small (S), medium (M), and large (L) HBsAg. 
 
HCV 

Classification and Structure 

HCV belongs to the Hepacivirus genus in the Flaviviridae family. Flaviviruses have 

single-stranded, plus-sense (+) RNA genomes. The ~ 9.6kb genome acts directly as 
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mRNA and all viral structural proteins as well as six non-structural proteins (NSP) are 

produced from a ~ 3000aa polyprotein precursor by viral and cellular proteases (Fig. 

2A). The genome is encased by a nucleocapsid made from multiple copies of a single 

capsid (C) protein, which is surrounded in turn by a host-derived lipid envelope (Fig. 

2B), that contains two viral-encoded proteins, called E1 and E2 (Table 2). Basic 

residues in the amino terminal portion of C protein are essential for genomic 

encapsidation (29). The precise numbers of C proteins, and native virion nucleocapsid 

dimensions, are not yet known. For more complete reviews, see (24, 30, 31). ER stress 

and induction of the host cell unfolded protein response (UPR) have been known to be 

involved in HCV-mediated autophagy (32). Similar responses were found by Asselah 

and colleagues to occur in HCV-infected liver biopsies (33). Guevin and colleagues 

reported that the viral non-structural protein NSP5B, the viral RNA-dependent RNA 

polymerase (Table 2), interacts with host proteins required for autophagy induction (6), 

and Ke and colleagues presented data that suggest UPR induction and formation of 

autophagic vacuoles was induced by HCV replication (34). Thus, as described in more 

detail in later sections, both HBV and HCV encode proteins that induce autophagy to 

the virus’ benefit. 

Over view of autophagy mechanism 

Autophagy (Greek for “self-eating”) refers to evolutionary conserved catabolic 

processes in which cytoplasmic macromolecules and organelles are degraded by 

lysosomes because they are damaged or they are needed as substrates to maintain 

energy homeostasis (35, 36). Autophagy can be selective or non-selective with respect 

to the cytoplasmic component being degraded and targeted during this mechanism (37,  
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Figure 2. (A) Map of the HCV genome. The viral genome consists of a linear single-
stranded (+) sense RNA molecule of ~ 9600 nucleotides that encodes for an ~ 3010 
amino acid long polyprotein. Upper scale line indicates nucleotides; lower scale line 
denotes amino acids. The 5’ and 3’ non-translated regions contain nucleotides predicted 
to fold into various regulatory secondary structures. Precise locations of each protein, 
released by viral and cellular proteases and denoted by different fill patterns, are 
indicated in Table 2 for the J4 clone; GenBank # AF054247. 
(B) Cartoon of HCV virion. The viral genome (innermost single line), is encased in an 
icosahedral shell composed of capsid protein. This nucleocapsid is surrounded by a 
host-derived lipid bilayer (double circular line) in which are embedded the E1 and E2 
envelope proteins. 
 
38). Examples of selective autophagy include mitophagy (degradation of mitochondria), 

ER-phagy (endoplasmic reticulum), ribophagy (ribosomes), pexophagy (peroxisomes), 

lipophagy (lipids) and xenophagy (pathogens) (39-44). Autophagy occurs under basal 

conditions but can also be stimulated by stresses like starvation, various pathologies or 

by pharmacological agents (45, 46). Disturbances in autophagy may play important 

roles in aging and in various disease conditions involving the liver, cardiac and skeletal 
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muscle as well as cancer, neurodegenerative, metabolic, inflammatory and infectious 

diseases (36, 39, 47). With respect to infectious disease, some pathogens have evolved 

mechanisms to escape, inhibit or even exploit autophagy for their own benefit (36, 47).  

Apart from macro-autophagy, there are at least two other forms of autophagy. 

One is chaperone-mediated autophagy (CMA) in which specific proteins containing a 

consensus peptide motif are translocated to the lysosome where binding to the 

lysosome-associated membrane protein type 2A (LAMP-2A) receptor is followed by 

protein internalization and degradation. The other is micro-autophagy in which cytosolic 

contents are internalized into lysosomes after direct invagination of the lysosomal 

membrane (35). 

In macro-autophagy (commonly, and in this review hereafter, referred to as 

autophagy), a portion of the cytoplasm becomes engulfed by an isolation membrane 

known as the phagophore (48). Through not fully understood mechanisms mediated by 

multiprotein complexes, a double-membrane structure (possibly derived from the ER, 

plasma membrane or mitochondria) called autophagosome is formed, the ends of which 

elongate until they fuse around the cargo (Fig. 3) (37, 49). The autophagosome 

eventually fuses with the lysosome forming an autolysosome after which its contents 

are degraded by the lysosomal enzymes (50).  

In yeast, more than 30 conserved autophagy-related genes (Atg) with several 

mammalian orthologs have been identified which are involved in the regulation of 

autophagy. One important pathway involves the mammalian target of rapamycin 

(mTOR) which negatively regulates a downstream complex of Atg1 (called ULK1 in 

mammals) Atg13 and FIP200 (39) (Fig. 3). Activation of mTOR by class I 
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Figure 3. Summary of autophagy machinery in mammalian cells. Growth factors 
may inhibit autophagy via Akt activation while nutrient depletion induce this process via 
activation of adenosine mono phosphate protein kinase (AMPK) with subsequent 
inhibition of mTOR. Bcl-2 plays an important function in inhibiting autophagy by direct 
interaction with Beclin-1. After activation of the autophagy process, an autophagosome 
is formed which engulfs the cargo (e.g. damaged organelles). Two ubiquitine-like chain 
reactions involving Atg12-Atg5-Atg16 formation and LC3 I lipidation are involved in 
autophagosome double membrane formation. The autophagosome finally fuses with a 
lysosome forming an autophagolysosome and its content is subsequently digested by 
lysosomal enzymes. 
 
 phosphatidylinositol 3-kinase (PI3K)-induced phosphorylation of Akt in response to 

insulin or growth factors results in inhibition of autophagy (51). In starvation, activation 

of AMP-activated kinase (AMPK) conversely inhibits mTOR and induces autophagy. 

Besides the ULK1 complex, another factor implicated in initiation of autophagosome 

formation is the class III PI3K Vps34, the activity of which is enhanced by interaction 
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with Beclin 1/Atg6 (51, 52) (Fig. 3). Binding of Beclin 1 by the anti-apoptotic protein Bcl-

2 inhibits autophagy (37).  

The elongation of pre-autophagosomal structures involves two ubiquitine-like 

reactions, the first of which results in a complex between Atg12, Atg5 and Atg16 which 

is essential for the elongation (39). The second is the microtubule-associated protein 

light chain 3 (LC3)-I (53). Following a reaction involving Atg7 and Atg3, LC3-I is 

converted to LC3-II, which is targeted to the elongating autophagosomal membrane (39, 

53). In contrast to the Atg12-Atg5-Atg16 complex, LC3-II remains bound to it until it has 

fused with the lysosome forming the autolysosome and LC3-II is commonly used to 

monitor autophagy (54, 55). The contents of the autolysosome are degraded by 

proteases, lipases, nucleases, and glycosidases. Lysosomal permeases release the 

breakdown products into the cytosol for use in synthetic and metabolic pathways (56). 

 

Virus and Autophagy 

Many viruses are currently listed in the literature that are shown to induce autophagy. 

Here we summarize some of the DNA and RNA encoding viruses that induce 

autopaghy.  

 

DNA Viruses 

Herpes Simplex virus1 (HSV1) and Human Cytomegalovirus virus (HCMV) are DNA 

encoding viruses that are members of the Herpesviridae family. Recently it was 

demonstrated that upon infection of human fibroblasts by these two viruses, early 

induction of autophagy with extensive lipidation of microtubule associated protein 1 light 
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chain 3 (LC3) is promoted (57). Another virus called Simian virus 40 that belongs to the 

family Polyomaviridae also enhances autophagy in HEK cells by inhibiting mTOR, and it 

is unclear whether autophagy induction by this virus enhances viral yield (58).  

 

RNA Viruses 

Dengue virus, like HCV, belongs to the family Flaviviridae and it induces autophagy in 

vitro. Autolysomes formed upon Dengue virus infection are associated with helping viral 

replication and an increase in the viral yield (7, 59). Influenza A virus belongs to the 

family Orthomyxoviridae and its infection increases autophagy and autophagic flux 

through an unknown mechanism, and an increase in autophagy enhances viral 

replication and viral yield (59). Polio virus is with a member of the family Picornaviridae. 

Polio virus infection triggers autophagy with the accumulation of LC3-positive 

autophagosome-like structures which assist viral replication in a non-lytic manner. An 

increase in viral replication and viral yields have been associated with the autophagy 

(60, 61). Another virus from the same family is Coxsackievirus B3 (CVB3). CVB3 

induces autophagy and also blocks the maturation of autophagosomes by an unknown 

mechanism. Increase in viral replication and yield of the virus has been reported due to 

the autophagy induction of this virus (62). Autophagy increased the replication of 

another Picornaviridae member, Encephalomyocarditis virus (EMCV) in host cells and 

released the virus particles in the cytoplasm in non-lytic manner. This evidence strongly 

suggests that autophagy helps in the replication of the ECMV virus (63). 
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Importance of autophagy in HBV and HCV infection and pathogenesis 

As previously mentioned, autophagy is a key metabolic process that can eliminate 

unwanted, damaged and worn out constituents of the cells. However viruses use this 

process to modulate their replication in host cells. Some of the best examples of such 

viruses are HBV and HCV. Studying HCV and its role in pathogenesis of hepatitis is 

vital, and may lead to development of novel drugs that could be used for the treatment 

of viral hepatitis infected patients. There are reports in the literature that HCV induces 

autophagy in hepatocytes (5). As was mentioned earlier, during autophagy, double 

membrane vesicles are formed known as autophagosomes. These autophagosomes 

fuse with lysosomes to form autolysosomes and degrade their contents. HCV induces 

incomplete autophagy via unfolded protein response pathway (32). In these 

experimental studies, authors showed that HCV prevents the maturation of 

autophagosomes to autolysosomes so that the contents of the autophagosome are not 

degraded and HCV can use them for its replication (32). This is one of the ways that 

HCV could possibly escape from the degradation by the autophagy pathway.  HCV may 

also avoid autophagy by preventing itself from being recognized by autophagy 

machinery. Immuno-electron microscopy and immunofluoresence results showed that 

there is no- or rare co-localization of HCV proteins with the autophagic vacuoles (47). 

Therefore, HCV hides from being recognized by the host cells’ defenses. HCV, following 

its cell entrance, uses the host cell factors to help in its replication. It has been 

experimentally proven that HCV uses autophagy related proteins such as Beclin 1, 

Atg4B, Atg5 and Atg12 for the translation of the viral mRNA thereby initiating its 

replication. Once the replication is initiated, HCV can multiply itself and enhance the 
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infection (64). It was reported that the viral non-structural protein NSP5B, the viral RNA-

dependent RNA polymerase, interacts with host proteins required for autophagy 

induction (6), and Ke and colleagues presented data that suggest UPR induction and 

formation of autophagic vacuoles was induced by HCV replication (34). HCV infection 

activates three main arms in UPR including ATF6, IRE1, and PERK, which induces 

CHOP expression (a UPR-dependent transcriptional factor) (Fig. 5). Knocking down of 

CHOP or inhibiting each of the UPR arms inhibits autophagy in HCV-infected cells 

which highlights the importance of UPR in HCV-induced autophagy (65).  This evidence 

emphasizes the role of autophagy-and UPR-related genes in HCV replication. 

Chloroquine, which is an inhibitor of autophagic proteolysis, also inhibits HCV 

replication in liver cells (66). Treatment with chloroquine down-regulates HCV 

replication in a dose dependent manner, indicating that autophagy-proteolysis plays an 

important role in viral replication. These experimental results highlight the fact that 

autophagic proteolysis can be a target for the treatment of viral hepatitis. Apart from 

that, this report suggests that chloroquine can be used as a drug for the treatment of 

chronic hepatitis C (66). The recent report by Shrivatsava et al demonstrates that the 

knockdown of autophagy related proteins, Beclin 1 or autophagy related protein 7 (Atg7) 

in immortalized human hepatocytes infected with HCV, enhances the interferon 

signaling pathways and induces apoptosis. However, the activation of interferon 

signaling pathway and apoptosis are absent in infected control immortalized human 

hepatocytes. These experimental evidences also show that HCV induced autophagy 

impairs innate immunity (67).  
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HBV regulates and “hires” autophagy for its benefit to promote replication. A 

recent report shows that HBV can enhance the autophagic process in hepatoma cells 

without promoting the degradation of lysosomes (28). This report also demonstrates by 

mutational analysis that HBV small surface proteins (HBsAg) are required to induce 

autophagy. Transfection of HBsAg is sufficient enough to induce autophagy in 

hepatoma cells. Autophagy machinery is activated during HBV infection and is 

responsible for enhancement of HBV replication in the cells (28). Another experimental 

finding shows that HBV transfected into the hepatoma cells induces an early autophagic 

response without increasing the autophagic protein degradation (27). This autophagic 

response enhances viral replication through the binding of HBV X protein (HBx) to 

PI3KC3. These experimental studies provide evidence that the autophagy pathway can 

be used as a target for the treatment of patients with HBV infection (26, 27). In the 

report published by Tang and colleagues (26), HBVx protein when transfected into the 

hepatocytes, leads to the increased activity of Beclin 1 protein expression, which in turn 

leads to the enhancement of autophagy. These results certainly provide evidence that 

HBV can induce autophagy in hepatocytes and thereby using this process for 

enhancing its replication. In conclusion, the autophagy pathway can be a target for 

designing drugs that better serve the purpose of patients with HBV infections in the 

liver. The role of autophagy in HBV infection is summarized in Figure 4.  

 

Conclusion and Future Direction 

Tremendous progress in research on liver pathology in recent years allowed for 

characterization of diverse forms of hepatitis. Hepatitis is usually induced by infection by 
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different pathogens and routes. Recent discoveries suggest several preventive 

strategies, including vaccines and passive immunization approaches, will be useful 

 

Figure 4. Autophagy involvement in life cycle of HBV. After infection of the cell by 
HBV, the viral particle moves to the host cell nucleus and the viral RNA particles are 
made and induce viral protein synthesis. Later the HBx protein is synthesized by HBx 
RNA which has been already made by host cells. HBx activated PI3K class III-induced 
autophagy via up-regulation of Beclin-1 synthesis. Autophagy later helps and activate 
viral DNA replication. 
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Figure 5: Diagram showing a typical HCV life cycle, activation of the Unfolded 
Protein Response and autophagy after HCV infection. (1) HCV enters liver cells via 
receptor-mediated endocytosis. (2) After RNA uncoating, the positive- strand RNA is a 
template for both translation (via host ribosomes) and RNA replication (via synthesis of 
negative- and then positive-strand RNA). (3) Following assembly of virion particles and 
glycoprotein maturation in the Endoplasmic reticulum and Golgi apartaus, HCV particles 
are transport and released from hepatocytes. (4) HCV infection results in ER stress and 
the accumulation and aggregation of unfolded proteins, triggering activation of PERK, 
ATF6 and IRE1α, three known ER stress receptors that promote the expression of 
CHOP. (5) An increase in CHOP expression activates the autophagy process via 
facilitating autophagosome formation. 
 
 therapeutics for at least some forms of hepatitis. HBV and HCV infections are 

significant worldwide health-threatening problems that cause huge healthcare budget 

expenditures every year in developed and developing countries. Every year, scores of 

HBV and HCV infected individuals enter the end-stages of the diseases, Therefore, 
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developing new therapeutic approaches are a very urgent matter. Targeting the life 

cycle of these viruses using molecular biology approaches could yield promising effects. 

Since HBV and HCV specifically modulate autophagy in host cells to enhance virion 

production (as described previously), targeting different steps of autophagy that 

modulate HBV and HCV replication and life cycle opens the way for the development of 

novel therapeutic strategies for these diseases. Autophagy is tightly linked to other cell 

death pathways involving apoptosis, necrosis, and ER-stress induced cell death. 

Therefore, targeting autophagy to direct the infected host cells being killed by other cell 

death mechanism could yield another strategy to combat HBV and HCV infection. 

Research and development of new anti-HBV and –HCV drugs is also hampered 

by the lack of good in vitro models of HBV- and HCV infection as well as lack of 

understanding of docking mechanisms used by these viruses to enter hepatocytes. 

Recent development in reprogramming (iPS-generation) as well as in regenerative 

medicine techniques, may soon allow overcoming those hurdles by creation of in vitro 

liver models. 
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Table 1: Hepatitis B virus open reading frames and proteins 
 
  ORF            Protein   
 Protein Location  Size  Size if 
 Name (nt) a.a.  kDa glycosylated                  Function   
 
 C 1901 – 2449 183  21.5 n/a Core structural protein 

 E ~1901 – 2385 ~162  16 n/a Secreted 

 P 2307 – 1620 843  90 n/a Polymerase, Primer, Reverse 
Transcriptase, RNaseH 

 S (s) 155 – 832 226  24 26-27 Small surface protein 

  (m) 3205 – 832 281  33 36 Medium surface protein 

  (l) 2848 – 832 399  39 42 Large surface protein 

 X  1374 – 1835 154  17 n/a Transactivator 

 

HB056 strain; GenBank # HM011465.1 
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Table 2 Hepatitis C virus open reading frames and proteins 
 
  ORF            Protein   
 Protein Location  Size  Size if 
 Name (nt) a.a.  kDa glycosylated                  Function   
 
 C 342 – 917* 192  21 n/a Core (Nucleocapsid) structural 

protein 

 E1 918 – 1493 192  21 33-35 Envelope protein, Fusion domain? 

 E2 1494 – 2582 363  38 70-72 Envelope protein, Receptor 

binding, Fusion? 

 p7 2583 – 2771 63  7  Viral cation channel, Viroporin 

 NS2 2772 – 3422 217  22  Autocatalytic protease 

 NS3 3423 – 5315 631  69  Protease, NTPase/helicase 

 NS4A 5316 – 5477 54  6  Protease cofactor 

 NS4B 5478 – 6260 261  27  Membranous web induction 

 NS5A 6261 – 7604 448  56-58  RNA replication 

 NS5B 7605 – 9374 590  68  RNA dependent RNA polymerase 

(RdRp) 

 

J4 clone; GenBank # AF054247.1; 9595 nucleotides 

* All proteins produced from a single ORF (nt 342 – 9374) that is co-translationally and 

post-translationally cleaved by viral- and cellular-encoded proteases. Values shown 

represent locations within single large ORF. 
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