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Abstract
Sulfur mustard (SM) and similar bifunctional agents have been used as chemical weapons for almost 100 years. 
Victims of high-dose exposure, both combatants and civilians, may die within hours or weeks, but low-dose 
exposure causes both acute injury to the eyes, skin, respiratory tract and other parts of the body, and chronic 
sequelae in these organs are often debilitating and have a serious impact on quality of life. Ever since they were 
first used in warfare in 1917, SM and other mustard agents have been the subjects of intensive research, and their 
chemistry, pharmacokinetics and mechanisms of toxic action are now fairly well understood. In the present article 
we review this knowledge and relate the molecular-biological basis of SM toxicity, as far as it has been elucidated, 
to the pathological effects on exposure victims.
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1. Introduction

“Mustards” are a group of compounds with the general 
structure R-CH

2
CH

2
X, where R is a leaving group and X is 

a Lewis base. Many are bifunctional: (R-CH
2
CH

2
)

2
X. Their 

range of toxic effects on humans and other animals accounts 
for their use in warfare and, occasionally, in cancer therapy. 
Figure 1 shows examples. This review will focus on the mus-
tard agent that has been used most frequently for military 
purposes, bis(2,2′-chloroethyl)thioether (R = Cl, X = S), com-
monly known as sulfur mustard (SM); it also has several 
other synonyms (Figure 1). However, many of the observa-
tions and inferences we discuss apply to mustard agents in 
general. Some investigations into the biological effects of SM 
have involved animal experiments using the monofunctional 
compound 2-chloroethyl ethyl sulfide (CEES), which has a 
lower acute toxicity than SM; others have involved SM itself, 
or nitrogen mustards.

The article is divided into three main sections:

History—The development of SM and other mustard 1. 
compounds, their use in warfare, and overview of the 
pathological effects of SM exposure.

Physical and chemical properties of SM and its general 2. 
biological effects.

Molecular basis of SM-related pathologies.3. 

2. History

2.1. Development and synthesis of SM
The historical development of SM was described by West 
(1919), Jackson (1936), and Medema (1986). Depretz alleg-
edly synthesized the compound from ethene and sulfur 
dichloride in 1822 and Riche did likewise in 1854:

SCl  + 2 CH =CH (Cl-CH CH ) S2 2 2 2 2 2→

 but neither chemist mentioned its vesicant properties. 
Niemann (1860) repeated the procedure and his account of 
the vesicant effect was unequivocal: “They [the vesicant prop-
erties] are represented by the fact that even traces brought 
into contact with the skin at first cause no pain, but after sev-
eral hours result in a reddening of the skin, and later blisters 
from burns, which fester for a long time and heal very badly, 
leaving severe scars.” Guthrie (1859, 1860) gave a similar 
account. In 1886, Meyer devised a two-stage synthetic proc-
ess that gave a higher yield, mentioned, e.g., in the obituary 
by Richardson (1897):

2 (HO-CH CH -Cl) +

K S
(HO-CH CH ) S + 2KCl2 2

2
2 2 2→

3 (HO-CH CH ) S +

2PCl
3(Cl-CH CH ) S + 2H PO2 2 2

3
2 2 2 3 3→
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Compound

Sulfur mustards

Nitrogen mustards:
military use

Bis(2,2'chloroethyl)thioether
(mustard gas)

Sulfur mustard, Yperite,
HD, LOST, MG

(Cl-CH2CH2)2S

Cl-CH2CH2-S-CH2CH2-S-CH2CH2-Cl

Cl-CH2CH2-S-CH2CH2CH2-S-CH2CH2-Cl

Cl-CH2CH2SCH2-Cl

(Cl-CH2CH2SCH2)2O

(Cl-CH2CH2SCH2CH2)2O

(Cl-CH2CH2)2NHCH2CH3

(Cl-CH2CH2)2NHCH3

(Cl-CH2CH2)3N

(Cl-CH2CH2)2N-P

N(CH2CH2-Cl)2

(Cl-CH2CH2)2NH NH

O

O

HOOC(CH2)3

CH2CHCOOH

CH2CH2-Cl

CH2CH2-ClN
H

OO
P

N

NH2

(Cl-CH2CH2)2NH

(Cl-CH2CH2S)2-CH2

Sesquimustard, Q

(Note: military stockpiles also
contain the butane and pentane’

analogues)

O mustard

HN1

HN3

HN2, Mechlorethamine,
Chlormethine, Mustine,

Nitrogen mustard, Mustargen

Endoxan, Cytozan, Neosar,
Procytox, Revimmune,

Cytophosphane

Uramustine

Ifosfamide

Mephalan, Alkeran

Chlorambucil

1,2-Bis(2-chloroethylthio)ethane

1,3-Bis(2-chloroethylthio)-n-propane

2-chloroethylchloromethylthioether

Bis(2-chloroethylthio)methane

Bis(2-chloroethylthiomethyl)ether

Bis(2-chloroethylthioethyl)ether

Bis(2-chloroethyl)ethylamine

Bis(2-chloroethyl)methylamine

Tris(2-chloroethyl)amine

Cyclophosphamide

Triscarboxymethylphenyl-
bis(2-chloroethy)ethylamine

5-[Bis(2-chloroethyl)amino]-
1H-pyrimidine-2,6-dione

N-3-bis(2-chloroethyl)-1,3,2-
oxazaphosphinan-2-amide-2-oxide

4-[Bis(chloroethyl)amino]
phenylalanine

Synonyms Structure

Nitrogen mustards:
therapeutic use

O

O(CH2)3

Figure 1. Compound, synonyms, and structure of different mustards used in warfare and cancer therapy.
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4   K. Ghabili et al.

 Later, Hans Thacher Clark and Emil Fischer modified the 
Meyer process by replacing phosphorus trichloride with HCl 
in the reaction with thiodiglycol (Vickery, 1975):

(HO-CH CH ) S +

2HCl
(Cl-CH CH ) S + 2H O2 2 2

2 2 2 2→

 Clarke was apparently hospitalized for 8 weeks because of 
the burns he suffered when a flask broke during this proc-
ess. Fischer's subsequent report about the incident to the 
German Chemical Society allegedly inspired the first deploy-
ment of SM as a chemical weapon (Duchovic and Vilensky, 
2007).

2.2. Use in warfare
In September 1917 German military first used SM at Ypres 
in the course of the First World War; from this, the old name 
“Yperite” originated (Jacques, 1991). Upon deployment on 
the battlefield, SM resulted in many casualties among enemy 
forces, although the effects usually became evident only 
around 12 hours after exposure. In cases of fatality, death 
typically succeeded some 4–5 weeks later. Four thousand 
British armed forces deaths and 16,526 nonfatal injuries were 
thenceforth due to SM in the War (Gilchrist, 1928). More gen-
erally, only very high doses (dermal exposure at 64 mg/kg or 
inhalation at 1500 mg min/m3) are lethal to humans within 
approximately 1 hour (Marshall, 1987).

Since the First World War, SM has been deployed in 
numerous combats, often against civilians (Feakes, 2003; 
Lyon, 2008): the United Kingdom against the Red Army 
(1919), Spain against Rif revolutionaries in Morocco (1921–
1927), Italy in Libya (1930), the Soviet Union against Japan in 
Xinjiang (1930s), Italy against Abyssinia (1935–1940), Poland 
against Germany, Germany against Poland and the Soviet 
Union, and Japan against China during the Second World 
War, Egypt against North Yemen (1963–1967), Iraq against 
Iran (1983–1988), Armenians against the Azerbaijanis in the 
Nakhchivan (1992), and Sudan against insurgents (1995–
1997). Regrettably, Sardasht, a small city in Northweatern 
Iran, was the world′s first city in which the civilians were 
attacked with chemical weapons (Khateri and Wangerin, 
2008). SM has been used in experiments on military volun-
teers as well (Goodwin, 1998).

2.3. Overview of the pathological effects of SM exposure
A comprehensive review of earlier literature about mus-
tard compounds was published by Gray (1989) and clinical 
considerations were discussed by, e.g., the World Health 
Organization (1970), Sidell and Hurst (1992), and Kehe and 
Szinicz (2005). The Institute of Medicine (1993) reported 
evidence for causal relationships between SM exposure and 
a wide range of health conditions.

The acute effects of SM exposure are usually delayed (Kehe 
et al., 2009b); there are usually no signs or symptoms during 
the first hour, though occasional cases of nausea, vomiting, 
and eye irritation have been reported, and contact with 
very high doses may lead to convulsions and coma within 
this period. The delay is shorter with liquid than with vapor 

contamination. Within 2–6 hours of exposure, typical signs 
are nausea, fatigue, headache, painful eye inflammation with 
photophobia, reddening of face and neck, soreness of throat, 
tachycardia, and increased respiratory rate. These symptoms 
become more severe during the subsequent 6–24-hour 
period, with skin inflammation and blistering. The blistering 
becomes more marked during the following 24 hours, and 
there is productive coughing with pus and necrotic sloughed 
epithelial material. Anemia and neutropenia may become 
apparent after 4–5 days, indicating bone marrow dysfunc-
tion; this effect may possibly be reversed by treatment with 
granulocyte colony-stimulating factor (Meisenberg et al., 
1993; Anderson et al., 2006). In severe cases, death is prob-
able after a delay of days or weeks. In less severe cases, the 
burns heal slowly, but as with other types of burn there is 
a risk of infection, resulting in sepsis (Institute of Medicine, 
1993). The other major system affected is the respiratory 
tract, and it is here that most of the chronic consequences of 
SM exposure are noticeable, with associated morbidity and 
mortality. We have reviewed the acute and chronic effects 
on lungs and other organs elsewhere (Ghabili et al., 2010). A 
thorough discussion of the pathological changes (acute and 
chronic) in lungs following SM exposure has been also pub-
lished by Ghanei et al. (2008), Ghanei and Harandi (2007), 
and Beheshti et al. (2006).

3. Physical and chemical properties of SM 
relevant to biological effects

3.1. Physical properties
In its pure form, SM (relative molecular mass 159.1) is a 
colorless, viscous liquid at room temperature, with a specific 
gravity of 1.27, a melting point of 14°C, and a boiling point 
of 218°C at 1 atmosphere pressure (it decomposes before 
boiling). Its vapor pressure is 0.11 mm Hg at 25°C. The vapor 
is denser than air, so on release it tends to accumulate near 
ground level. It is fat soluble rather than water soluble (the 
water solubility is 0.06% at 20°C), so it is rapidly absorbed 
by the skin (Ivarsson et al., 1992). It persists in the environ-
ment and remains active underground for up to 10 years 

(ClCH2CH2)2S ClCH2CH2S

ClCH2CH2SCH2CH2OR
CH2

CH2

SCH2CH2OR

ROCH2CH2SCH2CH2OR

CH2

R.OH

R.OH

CH2

Cl−

Cl−

H+

H+

+

+

+

+

Figure 2. Reaction of MG SM via sulfonium ion intermediate. If 
R = H, this represents a two-stage hydrolysis of SM; the final product is  
thiodiglycol.
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Molecular-based sulfur mustard toxicity  5

and (depending on weather conditions) even on the soil 
surface for several weeks, with significant environmental 
consequences (Beck et al., 2001; Ashmore and Nathanail, 
2008; Medvedeva et al., 2008). Other mustard agents differ in 
melting point and other physical properties but have broadly 
similar biological effects.

3.2. Chemistry of SM
The chemistry of SM has been discussed in detail by Reid 
(1958) and Ross (1962). Mustards often react by undergo-
ing internal cyclization to form onium ions (e.g., sulfonium, 
aminium); the leaving group is one of the chlorine atoms. 
SM, for example, forms a three-membered cyclic sulfonium 
group, an electrophile that attacks and alkylates many bio-
molecules and is susceptible to slow hydrolysis under physi-
ological conditions (Figure 2). In a bifunctional mustard such 
as SM, both chlorines can act as leaving groups in separate 
reactions.

3.2.1. Hydrolysis and reaction with alcohols
Figure 2 shows a schematic diagram of the reaction of SM 
with an alcohol or with water (R = H) involving cyclic sul-
fonium intermediates. The agent can therefore chemically 
modify carbohydrates and hydroxy groups on protein side 
chains. In alkaline solution the half-life for hydrolysis is about 
5 minutes, but the process is slower at lower pH. Various cata-
lysts have been investigated for accelerating the hydrolysis of 
SM in the environment (Cerny and Cerny, 1997).

The intramolecular cyclization of SM to the sulfonium ion 
intermediate is facilitated by heat in an aqueous environ-
ment. This may explain why warm and moist regions of the 
body (mucous membranes, eyes, respiratory tract, etc.) are 
especially vulnerable to the acute toxic effects of the agent 
(Ward and Seider, 1984; Somani and Babu, 1989).

3.2.2. Reaction with thiols
Thiols undergo an analogous alkylation reaction of the gen-
eral kind:

R-SH + (Cl-CH CH ) S R-SCH CH SCH CH -Cl+ 

 HCl
2 2 2 2 2 2 2→

 The other chlorine atom can react similarly with another 
molecule of the same thiol or a different one, leading to cross-
linking:

R-SCH CH SCH CH -Cl +

HS-R

R-SCH CH SCH CH S-R +

HCl
2 2 2 2 2 2 2 2→

3.2.3. Oxidation
The sulfonium salts contribute significantly to the biological 
activities of SM, but oxidation products may also be impor-
tant (Francis et al., 1957). The sulfoxide [OS(CH

2
CH

2
Cl)

2
] 

reacts much more slowly than the sulfone [O
2
S(CH

2
CH

2
Cl)

2
], 

so oxidation of SM to the sulfoxide constitutes detoxification 
(Riches et al., 2007). The sulfone, however, is susceptible to 
nucleophilic attack (Figure 3), which makes it toxic; it is a 

vesicant, like the parent compound. Rats that have received 
intravenous SM produce conjugates of the sulfone in their 
urine (Black et al., 1992).

3.2.4. Reactions with amines
SM reacts with ammonia and with primary, secondary and 
tertiary amines to yield a variety of products (Figure 4). It can 
therefore chemically modify proteins and phospholipids.

3.2.5. Reactions with purine and pyrimidine bases
At neutral pH, SM alkylates purine and pyrimidine bases in 
nucleosides, nucleotides, and nucleic acids, preferentially at 
N-7 of guanine and N-1 of adenine (Wheeler, 1962; Walker, 
1971; Ball and Roberts, 1972; Ludlum et al., 1986). Reactions 
with O-6 and N-2 of guanine and N-6 of adenine have also 
been reported (Ludlum et al., 1984, 1986; Habraken and 
Ludlum, 1989). Figure 5 shows examples of products isolated 
from the reaction of SM with guanine residues in DNA.

3.3. Biological effects
Apart from its injurious effects on the respiratory tract and 
its vesicant action (Devereaux et al., 2002; Evison et al., 
2002), SM is a mutagen and a potential carcinogen. An issue 
of the Annals of the New York Academy of Sciences in 1969 
was devoted to this topic. Because of its chemical prop-
erties, SM reacts with proteins, RNA, and phospholipids, 
but its most important cytotoxic action arises from DNA 
alkylation and cross-linking (Boursnell et al., 1946; Davison 
et al., 1961; Wheeler, 1962, 1967; Papirmeister and Davison, 
1964; Kohn et al., 1965; Lawley and Brookes, 1965; Price 
et al., 1968; Papirmeister et al., 1969, 1970, 1984a, 1984b; 
Roberts et al., 1971; Walker, 1971; Ball and Roberts, 1972; 
Gross et al., 1981; Meier et al., 1984; Ludlum et al., 1986; 
Habraken and Ludlum, 1989). Even low-dose exposure is 
likely to generate interstrand DNA cross-links, which are 
lethal to proliferating cells especially during late G1 or S 
phase (Mauro and Elkind, 1968; Roberts et al., 1968, 1986; 
Ludlum et al., 1978).

High doses may produce rapid cell death by other mecha-
nisms, which are probably implicated in acute injuries to the 
cornea, mucous membranes, and skin. One such mechanism 
is NAD depletion (Gross et al., 1985; Papirmeister et al., 1985). 
Poly(ADP-ribose) polymerase is activated by DNA strand 
breaks, such as those produced by sulfur and nitrogen mus-
tards, and the activated enzyme quickly depletes cellular 
NAD pools. The consequent lowering of intracellular ATP 
levels can cause rapid cell death.

(ClCH2CH2)2SO2 (CH2=CH)2SO2 + 2 HCl

(XCH2CH)2SO2 

HX

Figure 3. Addition reaction by sulfone derivative of SM. HCl is eliminated 
from the sulfone to yield divinylsulfone, which is susceptible to nucle-
ophilic attack by the moiety X.
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6   K. Ghabili et al.

Another well-established mechanism is the inactivation of 
sulfhydryl-containing proteins (Byrne et al., 1996) and pep-
tides such as glutathione (GSH) (Figure 6). This has implica-
tions for the redox state of the cell internum, leading to lipid 
peroxidation, membrane damage, calcium imbalance, and 
cell death (Langford et al., 1996).

The molecular basis of SM toxicity will be explored in 
greater detail in Section 4.

3.4. Metabolism and excretion
The usual routes of entry are the skin, respiratory tract, and eyes, 
or through the gastrointestinal tract if SM-contaminated food is 
consumed. Some 80% of SM applied to the skin evaporates, 10% 
remains in the skin, and 10% is absorbed systemically (Renshaw, 
1946) and is distributed among various tissues (Drasch et al., 
1987; Hambrook et al., 1993). After intravenous (IV) injection 

into rabbits, SM was distributed throughout the body and was 
concentrated in the liver, kidneys, and lungs; about 20% was 
excreted within 12 hours (Boursnell et al., 1946) and most of 
it had been excreted after 72 hours (Davison et al., 1961). In 
dogs, equilibration between blood and tissues is attained within 
5 minutes of perfusion of the lungs (IARC, 1975).

Somani and Babu (1989) described the toxicodynamics 
of SM, a subject of research since the Second World War. 
Acute LD

50
 values vary markedly among species and in many 

cases are uncertain; in rats they are reported to be 9 mg/kg 
percutaneous and 100 mg/m3 for 10 minutes by inhalation. 
In female mice, the LD

50
 values were determined during 

a 14-day observation to be 5.7–8.1 mg/kg percutaneous, 
23 mg/kg subcutaneous (Vijayaraghavan et al., 2005; Sharma 
et al., 2008), 8.1 mg/kg oral (Vijayaraghavan et al., 2005), and 
42.3 mg/m3 for 1 hour by inhalation (Lakshmana Rao et al., 
1999). Additionally, the 24-hour inhaled LD

50
 was calculated 

as 995 µg/kg in a guinea pig model (Allon et al., 2009). A 
comprehensive review of the toxicity of the vesicant agents 
including varying LD

50
 values in several species by multiple 

routes of administration was published by Watson and Griffin 
(1992). The physiological half-life may also vary among spe-
cies; in rat it is reportedly 7.4 days (Hambrook et al., 1993). 
The urinary metabolites include thiodiglycol and its conjugate 
(15%), glutamine-bis(β-chloroethyl sulfide) conjugates (45%), 
glutamine-bis(β-chloroethyl sulfone) conjugates (7%), and 
bis(β-chloroethyl sulfone) and conjugate (8%), with traces of 
cysteine conjugates (Black et al., 1992). These findings indicate 
that hydrolysis, oxidation, and reactions with amines and thi-
ols occur physiologically. Similar results have been obtained 
from rodents after intraperitoneal injection (Roberts and 
Warwick, 1963). The parent compound can be detected in 
urine for up to a week after exposure (Vycudilik, 1985).

3.5. Mutagenicity and genotoxicity
Because it modifies DNA (especially guanine residues) and 
causes cross-linking, SM induces chromosome aberrations in 
many cell types; it was the first agent shown to cause chromo-
some abnormalities in Drosophila melanogaster (Auerbach, 
1943). The DNA modification is dose related and the spectrum 
of genetic change, like that caused by X-irradiation, is cell 
cycle specific (Nasrat, 1954; Sobels and Van Steenis, 1957). 
Indeed, cytogenetic (chromosome) sensitivity to SM parallels 
that of X-rays in certain cell lines (Scott et al., 1974).

RSH + (ClCH2CH2)2S RSCH2CH2SCH2CH2Cl + HCl

(RSCH2CH2)2S

RSH

HCl

Figure 6. Reactions of SM with sulfhydryl compounds. The sulfhydryl 
compound is S-alkylated, and proteins containing thiol groups may be 
internally or extrinsically cross-linked.

(ClCH2CH2)2S + RNH2 S NR(a) + 2 HCl

(ClCH2CH2)2S + 2 RNH2
(b) (HRNCH2CH2)2S + 2 HCl

(ClCH2CH2)2S + 2 R2NH(c) (R2NCH2CH2)2S + 2 HCl

(ClCH2CH2)2S + 2 R3N(d) (R3NCH2CH2)2S + Cl−

R2NCH2CH2SCH=CH2 + R2NH

+

Figure 4. Reactions of SM with amines. One molecule of SM may react 
with either one (a) or two (b) molecules of ammonia or a primary amine; 
or with two molecules of a secondary amine (c), one of which may sub-
sequently be eliminated; or with two molecules of a tertiary amine (d) to 
generate a quaternary ammonium derivative.

N

N

N

O

N

N

HN

HN

H2N

H2N

N

HN

O

O

H2N N
H

N
H

N
H

O

N
S

2
N

HN

H2N N
H

CH2CH2SCH2CH2Cl(ClCH2CH2)S

(ClCH2CH2)2S
(ClCH2CH2)2S

CH2CH2SCH2CH2Cl

CH2CH2

Figure 5. Reactions of SM with guanine. SM can react with adenine and 
with pyrimidines, but guanine residues in nucleic acids are especially sus-
ceptible. Reactions with O-

6
 and N-

7
 of the purine derivative are shown; 

the bifunctional agent can cross-link two guanine residues, for example 
via their N

7
 atoms as illustrated. Reactions with the N-

2
 atom have also 

been reported.
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Molecular-based sulfur mustard toxicity  7

Subsequent studies demonstrated that SM induces 
chromosome aberrations in Vicia faba and marsupial lym-
phocytes (Scott and Bigger, 1972). Fishermen exposed to SM 
(when they netted leaky barrels of mustard agents that had 
been dumped at sea after the Second World War) showed 
elevated sister-chromatid exchange (SCE) frequencies in 
their peripheral blood lymphocytes (Wulf et al., 1985); DNA 
alkylation induces SCEs in animal cells (Kaina, 1998).

SM and related compounds also induce mutations in 
Drosophila (Auerbach and Robson, 1946, 1947; Luening, 1951; 
Sobels, 1962; Fahmy and Fahmy, 1972; Lee, 1975), L5178Y 
mouse lymphoma cells (Capizzi et al., 1974), Neurospora 
crassa (Auerbach and Moser, 1950; Jensen et al., 1950; Stevens 
and Mylroie, 1950), and Salmonella (Ashby et al., 1991). The 
effect is again dose related and SM has a mutagenic potency 
comparable to X-rays. One study demonstrated that occupa-
tional exposure to SM and Lewisite (manufactured in com-
bination) induces mutations in vivo in human lymphocytes 
at the hypoxanthine phosphoribosyltransferase gene (hprt) 
locus (Yanagida et al., 1988).

Nevertheless, SM does not appear to be teratogenic 
(Somani and Babu, 1989; Sasser et al., 1996), though nitrogen 
mustards are (Schardein, 1985).

3.6. Use of mustard agents in chemotherapy
Because mustard agents are genotoxic and mutagenic, and 
halt cell cycle progression during late G1 and S phases, they 
are particularly injurious to proliferating cells, including 

cancer cells. Nitrogen mustards are less reactive than SM 
and have different pharmacokinetics (Colvin and Chabner, 
1990), but they have similar effects on DNA and cause dra-
matic tumor regression in Hodgkin′s lymphoma patients 
(Schneider et al., 1948). Usually, therapeutic nitrogen mus-
tards are administered systemically and repeatedly over 
weeks or months; application to the skin has also been tried 
(Micaily et al., 1990). They were first used as chemotherapeu-
tic agents shortly after the Second World War (Gilman and 
Philips, 1946) and the history of this usage was reviewed by 
Jones (1998).

It soon became apparent that nitrogen mustards can 
induce as well as inhibit cancer growth (Boyland and 
Horning, 1949; Berger et al., 1986). They have been shown to 
increase the risk for acute nonlymphocytic leukemia (ANL) 
during treatment of ovarian cancer (Greene et al., 1982) and 
breast cancer (Fisher et al., 1985), and to act synergistically 
with other carcinogenic agents (Epstein, 1984; Beckmann and 
Nordenson, 1986). Approximately 3–5% of patients receiving 
therapeutic courses of nitrogen mustards and other alkylat-
ing agents develop ANL (Tucker et al., 1988), typically 3–9 
years after treatment (Blayney et al., 1987), and if the course 
is prolonged and intensive, the rate may be as high as 30% 
(Einhorn, 1978). ANL is highly malignant and responds 
poorly to conventional therapy. The frequency of solid tumors 
is also increased in these patients (Tucker et al., 1988). One 
study of Hodgkin′s disease patients treated with alkylating 
agents showed an estimated 10-year actuarial risk for ANL of 

DNA
alkylation

DNA
Oxidation

Double strand
breaks

PARP
activated

NAD and ATP
depletion

Acute phase
reaction

Macrophage
activation

ROS

GSH
depletion Lipid

peroxidation

Membrane
damage

Cell necrosis
and lysis

Phagocytosis of
tissue debris

Possible chronic
inflammation

SULFUR MUSTARD
EXPOSURE

Cross-linking

DNA
damage
network
activated

DNA
repair

Possible recovery after
acute symptoms

DNA
repair

pathways
activated

p53
phosphorylated

Figure 7. Initial effects of SM exposure on cells. This flow diagram shows some of the major effects of SM on cells: DNA damage, membrane damage, 
and glutathione oxidation. The consequences of these alterations in biomolecules and cellular structures lead to acute inflammation, which may resolve 
itself or become chronic, and possibly (if the SM exposure is low- dose and short- lived) to DNA repair. The inflammatory response largely accounts for 
the early symptoms affecting the exposure victim′s eyes, pharynx, larynx, and skin.
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8   K. Ghabili et al.

5.9%, for lymphoma 3.5%, and for solid tumors 5.8% (Koletsky 
et al., 1986).

4. Molecular basis of SM toxicity

In this section we attempt to relate the modifications of 
biomolecules caused by SM and its analogues (Section 3) to 
the pathological consequences for the main target organs. 
Many molecular pathways are involved. The picture remains 
incomplete, but research conducted particularly during the 
past decade enables us to outline the major processes as 
currently understood. In broad terms: (1) SM causes DNA 
alkylation and cross-linking, protein modification, mem-
brane damage, and GSH depletion (Figure 7); (2) in the target 
tissues (principally skin, eyes, and respiratory system) there 
is extensive necrosis, apoptosis, loss of tissue structure, and 
acute and possibly chronic inflammation. The task is to trace 
the pathways connecting (1) to (2).

4.1. DNA damage and its consequences
It is generally agreed that the major cytotoxic effect of SM 
arises from the alkylation of DNA bases and its immediate 
sequelae, inter- and intrastrand cross-linking and the forma-
tion of double-strand breaks. Most cells suffering cytotoxic 
injury of this kind respond in three ways: poly(ADP-ribose) 
polymerase (PARP) is activated; the DNA damage network 
is engaged; and stress genes are up-regulated. Some mam-
malian cells also release plasminogen activator when their 
DNA is damaged.

4.1.1. PARP activation
Kehe et al. (2009a) reviewed evidence linking SM-induced 
DNA damage to PARP activation, cellular nicotinamide ade-
nine dinucleotide (NAD) and adenosine triphosphate (ATP) 
depletion, and consequent necrotic cell death, which occurs 
concomitantly with apoptosis (see below; cf. Papirmeister 
et al., 1985; Das et al., 2003; Chatterjee et al., 2003). PARP 
engages with strand breaks in DNA through its zinc fingers 
and is crucial for initiating repair via nonhomologous end-
joining and homologous recombination (Vidaković et al., 
2005). Its activity increases with increasing levels of DNA 
damage, so its substrate, NAD, is rapidly depleted when such 
damage is substantial. When the NAD pool is low, glycolysis is 
impaired along with other catabolic processes, so the cellular 
ATP supply is prejudiced. Since ATP is required to replen-
ish the NAD pool, this effect is augmented, and necrosis and 
cell lysis are likely to ensue. Local and circulating phagocytes, 
notably macrophages, are then activated.

4.1.2. The DNA damage response network: Involvement 
of p53
The DNA damage response network triggers cell cycle arrest 
and DNA repair, or in the case of irreparable damage, inacti-
vation of the cells by senescence or apoptosis (Bartek et al., 
2007; Bitomsky and Hofmann, 2009). This may explain why 
SM is a marginal rather than a potent carcinogen. Central 
to the network are the protein kinases ataxia-telangiectasia 

mutated (ATM) and its homologue ATR, and the Mre11/
Rad50/Nbs1 (MRN) complex, which activates them (Enoch 
and Norbery, 1995; Cliby et al., 1998; Paull and Gellert, 1999); 
ATM is up-regulated by poly(ADP-ribose) (Haince et al., 
2007). A particularly important substrate of ATM is p53, which 
is activated upon phosphorylation and is crucial for activat-
ing DNA repair mechanisms. Jowsey et al. (2009) found that 
when human lymphoblastoid cell lines were challenged with 
CEES, the phosphorylation of p53 and Chk2 by ATM and ATR 
was induced and the DNA damage caused by CEES alkylation 
was repaired by both the base excision repair and nucleotide 
excision repair pathways. Minsavage and Dillman (2007) 
showed that p53 in cultured human keratinocytes was phos-
phorylated on Ser-15 within 15 minutes of SM treatment.

The repair of DNA lesions induced by SM has been studied 
in systems that are naturally deficient in repair enzymes of the 
base-excision and nucleotide-excision repair pathways, or 
had nonfunctional p53 (Walker, 1966; Reid and Walker, 1966, 
1969; Lawley and Brookes, 1968; Walker and Smith, 1969; Ball 
and Roberts, 1970; Walker and Reid, 1971; Plant and Roberts, 
1971; Fox and Fox, 1973; Gilbert et al., 1975; Murnane and 
Byfield, 1981; Savage and Breckon, 1981; Roberts and Kotsaki-
Kovatsi, 1986; Roberts et al., 1986). As expected, these repair-
deficient cells are particularly sensitive to DNA cross-linking, 
and they die after exposure to significantly lower doses of 
SM than are required to kill other cell types. One of the most 
important findings from these studies is that the DNA repair 
enzyme O-6-alkylguanine-DNA alkyltransferase has no effect 
on O-6 derivatives (Ludlum et al., 1986), so the O-6 alkyla-
tion products in DNA (Figure 5) may be the most important 
mutagenic lesions caused by SM and similar compounds.

4.1.3. Stress genes
In human liver carcinoma HepG2 cells, stress gene promot-
ers and response elements associated with DNA and protein 
damage are activated in a dose- and time-dependent manner 
by SM (Schlager and Hart, 2000). The consequent activation 
of second messenger systems and induction of inflammation 
and oxidative stress are characteristic of chemical injury to 
this cell line (Tchounwou et al., 2001). Typically, genes for 
cytochrome P450 isoforms, the xenobiotic response element, 
growth arrest, and DNA damage proteins such as GADD153 
and GADD45 are activated as well as c-fos. However, heat 
shock protein 70 (HSP70) levels are not elevated by SM (Blaha 
et al., 2000), hence perhaps the greater susceptibility of tis-
sues to alkylation by this agent.

4.1.4. Plasminogen activator release
SM-induced DNA damage may be followed by increased 
synthesis and release of plasminogen activator (Miskin and 
Reich, 1980). In skin cells, this is likely to lead to proteolytic 
degradation of the basal layer of the epidermis, contribut-
ing to separation along the dermis-epidermis boundary 
and consequent skin blistering after exposure to high doses 
of SM (Miskin and Reich, 1980; Papirmeister et al., 1985; 
Cowan et al., 1993; Detheux et al., 1997). Plasminogen acti-
vator release may also contribute to SM pathogenesis in the 
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Molecular-based sulfur mustard toxicity  9

lungs (Liu, 2008). Collagenases and proteoglycanases are 
also released from activated fibroblasts, but their action is 
restricted to the site of secretion by various local inhibitors, 
which have not been well characterized (Woessner et al., 
1990). The perturbation of normal tissue structure resulting 
from the proteolytic degradation of extracellular structures is 
also likely to stimulate macrophages.

4.2. Other modes of cell injury and their consequences
4.2.1. Protein cross-linking and perturbation of the 
cytoskeleton
Protein cross-linking, resulting from the alkylation of thiol, 
hydroxyl, and amino groups by bifunctional agents such as 
SM, activates the stress genes (see above). N-acetylcysteine 
ameliorates some of the toxic effects the agent, suggesting 
that thiol alklyation and cross-linking are particularly sig-
nificant in this regard (Callaway and Pearce, 1958; Fasth and 
Sorbo, 1973; Vojvodic et al., 1985; Gross et al., 1993; Wilde 
and Upshall, 1994; Zhang et al., 1995; Paromov et al., 2008). 
The implication that actin filament disruption is involved in 
SM-induced cytotoxicity (Dabrowska et al., 1996) was con-
firmed by Werrlein and Madren-Whalley (2000).

Other elements of the cytoskeleton are also modified by 
exposure to SM. Keratins are alkylated (van der Schans et al., 
2002) and keratin filaments are cross-linked (Dillman et al., 
2003), disrupting the intermediate filament network and 
perturbing cell morphology (Werrlein and Madren-Whalley, 
2000). Several type I and II cytokeratins, actin, stratifin, and 
galectin-7 were found to be significant cytoskeletal target 
proteins for alkylation by SM in cultured human epider-
mal keratinocytes (Mol et al., 2008). In addition, cultured 
keratinocytes exposed to SM showed decreased levels of the 
keratins associated with cell proliferation in the basal layer 
of the epidermis (K5 and K14), and increased levels of the 
keratins associated with terminally differentiated cells in 
the juxtabasal layer (K1 and K10) (Rosenthal et al., 1998). 
Changes in mouse ear keratinocyte gene expression after 
topical application of SM were consistent with these results 
(Dillman et al., 2006). These authors also found changes in 
the levels of mRNAs for kinesin family proteins, suggesting 
that SM might disturb microtubule-based motility, but this 
has not been confirmed.

4.2.2. Oxidative stress: Oxidants versus antioxidants
The bulk of evidence indicates that oxidative stress, or 
imbalance between the antioxidant enzymes and products 
of oxidative reactions, plays a key role in the pathogenesis 
of both acute and chronic consequences of SM exposure. 
Intracellular levels of the reduced form of glutathione 
are markedly depleted by the alkylating effect of SM, and 
there is a concomitant increase in the levels of reactive 
oxygen species (ROS) (Han et al., 2004). This has numerous 
implications for the cell, which will be outlined below. One 
consequence, however, is lipid peroxidation resulting in 
membrane damage (Naghii, 2002), another contributor to 
necrotic cell death and lysis leading to macrophage activa-
tion and phagocytosis.

In an in vitro model for the culture of mouse keratinoc-
ytes, CEES activated keratinocyte c-Jun N-terminal kinase 
(JNK) and p38 mitogen-activated protein (MAP) kinases 
and their inhibition negatively affected the expression 
of the glutathione S-transferases GSTP1 and GSTA1-2, 
respectively (Black et al., 2010). Likewise, CEES-induced 
lung oxidative injury is attenuated by a metalloporphyrin-
based catalytic antioxidant (O′Neill et al., 2010). Twenty-
four hours after topical application of a 0.5 LD

50
 dose of 

SM in rats, significant inhibition of superoxide dismutase, 
catalase, and glutathione peroxidase activities were noted 
in the leukocytes and splenic tissue (Husain et al., 1996). 
In an experimental study, Pohanka and Stetina reported a 
dose-dependent and bidirectional effect of SM on plasma 
oxidant levels as estimated by cyclic voltametry; topical 
application of 20 mg/kg SM for 2 hours increased concen-
trations of plasma oxidants 24 hours post exposure, whereas 
application of 80 mg/kg was contrarily associated with a 
substantial decrease in the plasma oxidants (Pohanka and 
Stetina, 2009). The authors attributed the latter effect to 
the cytostatic properties of high-dose SM, which had been 
previously reviewed by Kehe et al. (2008). Although in their 
study, plasma antioxidant levels increased with SM doses 
of 20 and 80 mg/kg, the shift of oxidant-to-antioxidant ratio 
was predominantly a consequence of oxidants (Pohanka 
and Stetina, 2009). In another study, intraperitoneal injec-
tion of SM (>10–20 mg/kg) was associated with decreased 
activities of superoxide dismutase, catalase, glutathione 
peroxidase, and glutathione S-transferase in the liver as 
well as depletion of glutathione and increased malondi-
aldehyde levels, a by-product of lipid peroxidation (Jafari, 
2007). Increased activity of serum catalase was found in 
Sardasht victims of SM exposure, possibly indicating an 
enhanced oxidative load and antioxidant requirements 
(Shohrati et al., 2008b). Although this study failed to show 
a significant difference in serum superoxide dismutase 
activity between the exposed patients and healthy controls 
(Shohrati et al., 2008b), a later study found diminished 
levels of enzyme activity among exposed patients with 
moderate-to-severe pulmonary involvement (Shohrati 
et al., 2009). Notably, patients with dyspnea and/or chronic 
cough demonstrated a lower superoxide dismutase activity 
(Shohrati et al., 2009).

4.2.3. Direct damage to the cell membrane: Macrophage 
activation, neutrophil recruitment, and acute 
inflammation
Because it reacts with several functional groups in pro-
teins and lipids, SM also causes direct chemical damage 
to the cell membrane. Once again, this contributes to cell 
lysis and local macrophage activity. Membrane damage 
probably also inactivates the Akt pathway and it may lead 
to calpain activation via Ca2+ influx in some cell types. 
However, the possible role of these effects in SM-induced 
apoptosis (see below) has not been established, though SM 
is known to affect the Akt pathway in Jurkat cells (Zhang 
et al., 2002).
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10   K. Ghabili et al.

Different tissues house functionally different macro-
phage populations, but there are commonalities in their 
responses. In all affected tissues, the cytotoxic, cytolytic, 
and extracellular structure–perturbing effects of SM result 
in the production of superoxide and the secretion of 
cytokines by macrophages, particularly interleukin (IL)-1, 
-6, and -8 and tumor necrosis factor-alpha (TNFα). TNFα 
and superoxide are instrumental in recruiting neutrophils 
to the site of injury and promoting phagocytosis of injured 
cells, extracellular structures, and debris (Warren et al., 
1990; Strieter and Kunkel, 1994). The ensuing acute phase 
reaction accounts for the early effects of SM exposure on 
eyes and skin (Section 4.1). For instance, skin exposed 
to SM quickly shows infiltration by activated immune 
cells, up-regulated expression of genes for inflammatory 
mediators, and increased secretion of those mediators 
(Rikimaru et al., 1991; Tsuruta et al., 1996; Ricketts et al., 
2000; Sabourin et al., 2000, 2002). In particular, TNFα-
positive neutrophils accumulate in injured skin within 3 
hours (Wormser et al., 2005). Abe et al. (1996) found that 
an increase in endothelial-leukocyte adhesion molecule 1 
(ELAM-1 or E-selectin) during healing of SM skin lesions 

played a major role in recruitment of the inflammatory 
cells.

Kehe et al. (2009a) emphasized the activation of inflam-
matory mediators such as IL-1α, IL-1β, IL-6, IL-8, and 
TNFα in tissue responses to SM exposure. Phagocytes are 
not their only sources. Several studies have shown that all 
these cytokines are up-regulated in normal human kerati-
nocytes after SM exposure (Arroyo et al., 1999; Lardot et al., 
1999; Sabourin et al., 2000, 2002, 2004), recruiting cells of the 
immune system to the site injured by the agent. Inhibition 
of the MAP kinase (MAPK) family member p38 appears to 
block this up-regulation in cultured keratinocytes (Dillman 
et al., 2004). Using a human keratinocyte culture, Pu et al. 
(1995) found that the level of IL-1α paralleled the extent of 
DNA cross-linking after SM treatment and was accordingly 
a useful measure of cytotoxicity.

4.3. Consequences of TNFα production
Among the cytokines associated with the acute phase 
response, TNFα probably has the most diverse effects, and 
their consequences are especially pertinent to SM-induced 
cytotoxicity (Figure 8).

Sphingomyelinases
up-regulated

Ceramide
accumulation

CDP-choline
pathway
inhibited

Lung surfactant
production
impaired

TNFα

p53
up-regulated

TNF-R1
occupied

TRADD
activated

FADD
activated

Caspase-8
activated

Caspase-9
activated

Executor
caspases
activated

SMAC released
IAP binding

NO

Cytochrome C
released

Mitochondrial
permeability

BAX

p53
phosphorylated

(ATM activated
by DNA damage)

MAPK
pathways
activated

Cytokines
pp-regulated

AP1
transcription

factors

ATF, Fos and Jun
family members

Cell proliferation

Calpain

Akt
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PARP

Membrane
damage

DNA damage
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ROS
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Figure 8. Involvement of TNFα in cellular responses to SM poisoning. TNFα, secreted by macrophages and other cell types, stimulates a range of different 
intracellular pathways, some of which promote the inflammatory response, while whereas others lead inter alia to apoptosis. In lung tissue, apoptosis, 
inflammation, and the down-regulation of lung surfactant production seem to be largely responsible for the pathological effects of SM (COPD, pulmonary 
edema, impaired gas exchange, etc.). In the skin, apoptosis, inflammation, and disruption of the cytoskeleton and extracellular keratin structures (not 
shown in the diagram) seem to be largely responsible for the vesicant action of SM.
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Molecular-based sulfur mustard toxicity  11

4.3.1. MAPK family activation
A major effect of TNFα in many cell types is activation of 
members of the MAPK family. Exposure of pulmonary 
epithelial cells to CEES engages all members of the family 
(extracellular signal-regulated kinase 1/2 [ERK1/2], p38, and 
JNK1/2) within 1 hour, thus activating activator protein 1 
(AP-1) transcription factors and increasing the protein levels 
of Fos, which in turn affects activating transcription factor 
(ATF) and Jun family members (Rebholz et al., 2008). Apart 
from cytokine production (see above), the consequences 
of MAPK activation include the up-regulation of cyclin D1 
and the cell differentiation marker proliferating cell nuclear 
antigen (PCNA).

Along with the direct activation of c-fos, these events 
tend to promote cell proliferation. On the face of it, this 
conflicts with the major antiproliferative responses to SM 
exposure discussed below. In lung epithelia, enhanced 
proliferation may be an effective defensive reaction or a 
contributor to the lung injury (Mukhopadhyay et al., 2008); 
however, the latter seems more likely, since abnormal 
epithelial growth and cellular infiltration, together with 
continuous lung inflammation, are injurious (Allon et al., 
2009). Control of AP-1 signaling may also mediate the 
protective effect of antioxidant liposomes against CEES-
induced lung injury, according to evidence from animal 
experiments (Mukhopadhyay et al., 2009).

4.3.2. Sphingomyelinase activation
Intratracheal CEES in guinea pigs caused massive local hem-
orrhaging and edema into the alveoli, as in rats, and TNFα 
levels were markedly elevated (Chatterjee et al., 2003; Das 
et al., 2003). TNFα activated sphingomyelinases and hence 
caused a persistent local accumulation of ceramides, which 
promote apoptosis.

Since a major component of lung surfactant is dipalmitoyl 
phosphatidylcholine and the major pathway for its synthesis 
is the cytidine diphosphocholine (CDP-choline) pathway, 
inhibition of that pathway by ceramides (cf. Chatterjee et al., 
2003; Das et al., 2003) might explain the underproduction 
of surfactant after SM inhalation. Indeed, dose-dependent 
inhibition of choline phosphotransferase by ceramides was 
observed after intubation of guinea pig lungs with CEES 
(Sinha Roy et al., 2005).

4.3.3. Nitric oxide
Several in vitro and experimental studies have shown that 
nitric oxide (NO) may play an important role in the acute 
or chronic phase of mustard agent toxicity (Gao et al., 
2008; Yaren et al., 2007; Ishida et al., 2008; Ghazanfari 
et al., 2009a). Among the genes up-regulated in response 
to TNFα stimulation in some cell types is inducible nitric 
oxide synthetase (iNOS) (Ruimi et al., 2010). This probably 
contributes to SM-induced cytotoxicity; for example, acute 
epidermal inflammation is reduced when iNOS expression 
is inhibited, e.g., by iodine treatment (Nyska et al., 2001). 
In pulmonary epithelial cells and perhaps other cell types, 
SM causes concentration- and time-dependent production 

of iNOS, presumably via TNFα; it also activates endothelial 
NOS (eNOS) following translocation from the plasma mem-
brane, possibly a consequence of direct membrane damage 
(Steinritz et al., 2009).

In vitro, exposure to SM substantially enhances expression 
of inducible nitric oxide synthase (iNOS) and intracellular NO 
production in human tracheobronchial and small airway epi-
thelial cells (Gao et al., 2007, 2008). Increased iNOS activity is 
associated with enhanced lipid peroxidation and inflamma-
tory cell infiltration in a rat model of lung SM toxicity (Yaren 
et al., 2007).

Notably, the effects of mustard agents may vary depending 
on the type of exposed cell/tissue. In vitro, SM suppresses 
iNOS expression in cultured normal human epidermal kerati-
nocytes by ~50%, and this effect may explain the delayed 
healing of SM-induced skin wounds (Ishida et al., 2008). 
On the other hand, a study on Sardasht victims of mustard 
agent revealed elevated levels of serum nitric oxide among 
patients with late dermatological complications (Ghazanfari 
et al., 2009b). Serum nitric oxide concentrations increased 
with increasing severity of dermatological sequelae in the 
exposed patients (Ghazanfari et al., 2009b). However, the lat-
ter group (Ghazanfari et al., 2009a) reported no association 
between the serum NO levels and pulmonary problems, as 
defined by the Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) classification, in the victims (Ghazanfari 
et al., 2009a). Instead, they found higher serum levels of NO 
among patients complaining of excess sputum production 
(Ghazanfari et al., 2009a). Exhaled NO was measured in a 
group of Iranian victims with chronic respiratory symptoms; 
this was found to be lower in steroid-off patients with obstruc-
tive lung disease than in healthy nonsmokers (unpublished 
data).

4.3.4. p53
Transcription of the pro-apoptotic protein p53 is strongly 
promoted by TNFα via the ERK/JNK pathways. Quantitative 
studies show that there is clear stress-dose-response effect on 
p53 protein levels, the stress being DNA damage (Nishizuka 
et al., 2008). The factor ARF (alternative reading frame) is 
also up-regulated by TNFα-activated MAPK pathways and 
stabilizes p53 (Zhang et al., 1998). The factors participating 
in the DNA damage response network, especially ATM (see 
above), phosphorylate p53. Phosphorylated p53 promotes 
DNA repair, is a major contributor to cell cycle arrest, and 
initiates one pathway of apoptosis. Some of its actions on 
gene transcription are modulated by Snai-2 (Pérez-Caro 
et al., 2008).

Activation of p53 has two major outcomes: cell cycle arrest 
or apoptosis. Its role in tissue responses to SM exposure may 
therefore be crucial. SM causes accumulation of p53 in cul-
tured human keratinocytes (Rosenthal et al., 1998), and p53 
mutations were found in the lung cancers in former workers in 
SM manufacturing plants (Manning et al., 1981; Easton et al., 
1988; Nishimoto et al., 1987, Hosseini-Khalili et al., 2009). 
After SM-induced DNA damage to the central nervous system 
(CNS) in mice, neurobehavioral changes were associated with 
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increased p53 expression and therefore probably the mito-
chondrial apoptosis pathway (Sharma et al., 2009).

Several methods including DNA microarray technology 
have been used to characterize alterations in gene expres-
sion and consequent perturbation of molecular pathways 
in response to SM, many of them mediated by TNFα (Smith 
et al., 1993; Schlager and Hart, 2000; Dillman et al., 2004; 
Zhang et al., 2002; Platteborze, 2003; Rogers et al., 2004; 
Sabourin et al., 2004). SM causes a dose-dependent up-
regulation of many p53-responsive genes in keratinocytes 
(Dillman et al., 2005), but it is not yet clear how many other 
genes are up-regulated independently of p53.

4.4. Cell death processes: Apoptosis and necrosis
SM causes both necrotic and apoptotic cell death in endothe-
lia (Dabrowska et al., 1996; Atkins et al., 2000).

4.4.1. TNFα-associated apoptosis pathways
The foregoing discussion has indicated several possible con-
tributors to the induction of apoptosis in SM-affected cells:

Calpain activation resulting from membrane damage.•	
PARP activation resulting from DNA damage.•	
Ceramide production resulting from TNF•	 α-induced 
activation of sphingomyelinases.

 However, the two most generally important mechanisms of 
apoptosis caused by SM exposure are the extrinsic (death 
receptor, Fas) and intrinsic (mitochondrial) pathways, both 
related to TNFα. Kehe et al. (2009a) reviewed evidence linking 
SM-induced DNA damage to both pathways, details of which 
are well known. Binding of TNFα to the receptor TNF-R1 is 
instrumental in up-regulating inflammatory mediator genes 
but also activates the TNF-RSF1A–associated via death 
domain (TRADD), leading to activation of the Fas-associated 
death domain (FADD) and hence of caspase-8. Caspase-8 
then activates the executor caspases and apoptosis proceeds. 
Independently of this pathway, phosphorylated p53 causes 
a Bax-related increase in mitochondrial membrane perme-
ability; nitric oxide, produced by eNOS and the TNFα- up-
regulated iNOS, has a similar effect. The release of SMAC 
(second mitochondria-derived activator of caspases) from 
the mitochondrion and subsequent binding to IAP (inhibi-
tor of apoptosis) leads to caspase release. Concomitantly, the 
release of cytochrome c activates caspase-9, and again the 
executor caspases are activated.

4.4.2. Relationship of apoptosis to pathological effects 
of SM
Epithelial cell apoptosis may explain the significant lesions 
that appear in the respiratory tract during the months fol-
lowing SM exposure (Chatterjee et al., 2003; Das et al., 2003). 
It might also explain the effects of high SM dosage on the 
gastrointestinal tract (Graef et al., 1948; Papirmeister et al., 
1991; Schonwald, 1992).

Using an in vitro cultured model of the human alveolar-
capillary boundary, Emmler et al. (2007) found a marked 

time- and dose-dependent reduction of transbilayer elec-
trical resistance associated with structural loss of both cell 
layers. This effect, which presumably contributes to pulmo-
nary edema, was attributable to apoptosis, since markers 
including cytochrome c, p53, FADD, and procaspase-3 were 
significantly induced; IL-6 and IL-8 were also up-regulated 
(Pohl et al., 2009). SM-related cytotoxicity of the endothelial 
cells was indicated by adenylate kinase (AK) release and by 
TUNEL (terminal deoxynucleotidyl transferase dUTP nick 
end labeling) and Hoechst staining of the nuclei (Emmler 
et al., 2007).

Steinritz et al. (2007) also found evidence for apoptosis in 
cultured pulmonary A549 cells that was resistant to broad-
spectrum caspase inhibitors. Apoptosis induced by SM 
appeared to be associated with a dominant caspase-8–medi-
ated pathway, but bronchial epithelial cells were much more 
sensitive to SM than small airway epithelial cells; caspase-9 
was activated only in the former, suggesting a mitochondrial 
pathway of apoptosis in the latter (Ray et al., 2008). Martin 
et al. (2009) reported similar results for immature mouse 
cortical neurons.

Mol et al. (2009) used specific inhibitors of caspase-8 and 
caspase-9 to show that SM-induced apoptosis is also initiated 
by both the death receptor and mitochondrial pathways in 
keratinocytes. Cells were morphologically better conserved 
when caspase-8 rather than caspase-9 activity was blocked. 
These authors further showed that (a) transmembrane 
enzymes of the “A disintegrin and metalloproteinase” family 
and (b) membrane-type metalloproteinases are implicated in 
the epidermal-dermal separation induced by SM. Also, TNFα-
converting enzyme is involved in degrading cell-matrix adhe-
sions, attenuating the response to epithelial-derived growth 
factor (EDGF) and releasing TNFα, a previously unsuspected 
mechanism contributing to the toxic effects of SM.

4.4.3. Necrosis
Mild dermal and epidermal necrosis is associated with 
SM-induced skin lesions (Momeni et al., 1992) and this is 
concurrent with the inflammatory response. Epidermal and 
follicular necrosis begins within a few hours of SM challenge 
to hairless guinea pig skin, accompanied by intracellular 
edema (Yourick et al., 1993). In the skin, melanocytes are 
more susceptible to necrotic death than keratinocytes. The 
DNA repair cofactor PCNA is present at much higher levels 
in resistant cell lines (Smith et al., 2001).

Tu et al. (2009) reported that p53 induces cathepsin Q, 
which cooperates with reactive oxygen species (ROS) to 
execute necrosis. The authors termed this mechanism “pro-
grammed necrotic death.”

4.5. Involvement of reactive oxygen species and nuclear 
factor kappa B
Reactive oxygen species (ROS) are intimately associated with 
TNFα-induced apoptosis (Bubici et al., 2006), promoting 
cytochrome c release from mitochondria. ROS also have a 
range of other cytotoxic effects (e.g., oxidation of DNA and of 
GSH) that contribute to necrosis and cytolysis as well as the 
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Molecular-based sulfur mustard toxicity  13

inflammatory response. Mustard agents have been shown to 
increase ROS levels in affected tissues (Figure 9).

CEES causes mitochondrial dysfunction in airway epithe-
lial cells within 4 hours of exposure and within 12 hours there 
is a marked increase in mitochondria-associated ROS pro-
duction (Gould et al., 2009). CEES treatment also lowers the 
total superoxide dismutase (SOD) activity in lungs by direct 
inactivation of SOD-3 (Mukhopadhyay et al., 2006). Patients 
with moderate to severe lung injury as a result of SM expo-
sure have lower pulmonary epithelial SOD levels than healthy 
controls, although their catalase levels are higher (Shohrati 
et al., 2008a). Chronic SM exposure may also generate oxida-
tive stress in the mouse brain, triggering cytochrome c release 
and caspase-3 activation and precipitating neuronal apop-
tosis, contributing to neurobehavioral impairment (Sharma 
et al., 2009).

Nuclear factor kappa B (NF-κB) is also up-regulated by SM 
in cultured cells (Atkins et al., 2000; Schlager and Hart, 2000) 
and by CEES in guinea pig lung (Chatterjee et al., 2003). In 
general, TNFα inhibits proliferation and promotes apoptosis 
and NF-κB has the opposite effects, but the detailed relation-
ships among TNFα, ROS, and NF-κB are complicated and 
depend on cell type (Szołtysek et al., 2008). TNFα produc-
tion is induced by ROS via NF-κB in some cells (Chandel 
et al., 2000); in others, NF-κB mediates TNFα production in 
response to SM (cf. Atkins et al., 2000). NF-κB can oppose 
TNFα-induced apoptosis by interfering with JNK pathway, 
attenuating ROS production (Bubici et al., 2006). However, 
in many cell types, for example human umbilical vein 
endothelial cells, TNFα induces ROS production, which then 
up-regulates NF-κB (Mukherjee et al., 2005) and this appar-
ently mediates inflammation in lung epithelia (Babbar and 
Casero, 2006).

Minsavage and Dillman (2007) found that in cell lines 
showing the classical rapid activation of NF-κB by TNFα, 
bifunctional alkylating agents such as SM also cause a 
slower, nonclassical activation mediated by p53 and the 
p90 ribosomal S6 kinase (p90RSK). Rebholtz et al. (2008) 
found that SM induced the classical NF-κB pathway in 
keratinocytes, strictly dependent on the transactivating 
subunit RelA. Concomitantly with the activation of NF-κB, 
the Raf-1/MEK1/2/ERK1/2/MSK1, MKK3/6/p38/MSK1, 
and MKK4/7/JNK1/2 pathways were induced, though c-Jun 
was not phosphorylated. NF-κB mediates the injury to the 
alveolar-capillary boundary studied by Emmler et al. (2007) 
and is directly up-regulated by SM in keratinocytes (Atkins 
et al., 2000); N-acetylcysteine attenuates this up-regulation. 
The induction of epithelial necrosis in the respiratory tract 
also appears to involve NF-κB (Dacre and Goldman 1996; 
Das et al., 2003). In the activation of sphingomyelinases by 
TNFα, NF-κB was only transiently elevated, so its potentially 
anti-apoptotic effects were ephemeral (Chatterjee et al., 
2003; Das et al., 2003).

4.6. Protein phosphorylation cascades induced by SM
SM leads to the phosphorylation of a myriad of proteins. 
Using stable isotope labeling with amino acids in cell 
culture (SILAC) and immobilized metal affinity chroma-
tography (IMAC) methods, Everley and Dillman (2010) 
identified numerous phosphorylated proteins following 
DNA damage in SM-treated cells. Among these, the levels 
of phosphorylated LIG1, RFC1, SRRM2, SVIL, TP53BP1, 
BCLAF1, CDK2, DPF2, and ZMYND8 were higher than 
normal. Subsequently, these authors designed a de novo 
construction of SM-specific protein interaction networks. 
Similarly, proteomic analysis of DNA-protein  cross-linking 
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Figure 9. Involvement of reactive oxygen species in cellular responses to SM poisoning. ROS production as a result of TNFα stimulation was indicated 
in Fig.Figure 8, but ROS appear to mediate many of the cytotoxic actions of SM; see text for details.
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(DPC) by the antitumor nitrogen mustard, mechlo-
rethamine, identified many proteins including those 
involved in cell motility, transcriptional regulation, chro-
matin remodeling, DNA supercoiling, DNA replication, 
glycolysis, initiation of apoptosis, and ribosome biogenesis 
(Loeber et al., 2009).

5. Conclusions

Although our understanding of the molecular mecha-
nisms underlying the pathogenic effects of SM exposure 
is incomplete, enough detail is now known to explain the 
major points. Because it is highly reactive and bifunctional, 
SM alkylates most biomolecules, causing extensive dam-
age to membrane constituents, cellular and extracellular 
proteins, and especially DNA. Proteolysis (induced, e.g., by 
plasminogen activator) and perturbation of the cytoskele-
ton appear to account for the disruption of tissue structure 
in skin, lungs, and gastrointestinal tract. Cells are lysed 
because of membrane damage and ATP depletion resulting 
from the response to DNA damage. Together, these effects 
recruit phagocytes and promote an acute phase reaction, 
which accounts for the effects of SM on the eyes and its 
well-known vesicant properties. Mechanisms of apoptosis 
and necrosis induced by SM have been thoroughly inves-
tigated, and the involvement of TNFα, NF-κB, ROS, and 
p53 is now well understood. These details have helped to 
elucidate the pathogenesis of chronic lung injury, includ-
ing edema, impairment of the alveolar-capillary bound-
ary, and onset of chronic obstructive pulmonary disease 
(COPD).

These advances in knowledge suggest methods for 
intervening in SM-related pathogenesis, or possibly 
reversing some of its effects. The success of studies using 
N-acetylcysteine and antioxidant-bearing liposomes are 
illustrative. Further studies of the effects of SM and the 
molecular and cellular level are likely to lead to new clini-
cally applicable findings.
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