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Abstract 
 
Objective(s) 
The aim of this study was to characterize the hepatitis B virus surface protein genotypes and sequence 
variations among hepatitis B virus surface antigen (HBsAg) positive chronic patients in Hormozgan province, 
south of Iran. 
Materials and Methods 
A total of 8 patients enrolled in this study. The surface gene was amplified and directly sequenced. 
Genotypes and nucleotide/amino acid substitutions were identified compared to the sequences obtained from 
the database. 
Results 
All strains belonged to genotype D. Overall 77 “mutations” occurred at 45 nucleotide  positions, of them, 44 
(57.14%) were silent (no amino acid altering) and 33 (42.86%) were missense (amino acid changing). A number 
of 24 (80%) out of 30 amino acid changes occurred in different immune epitopes within surface protein, of 
which, 9 (30%) in B cell epitopes in 7 residues (2 occurred in “a” determinant region); 8 (42.1%) in T helper 
epitopes in 7 residues and 7 (10%) in 4 residues inside CTL epitopes. 
Conclusion 
Hepatitis B virus genome containing mutated immune epitopes no longer could be recognized by specific T-
cells of the host immune surveillance and did not enhance anti-HBs production. This could led to the 
progression of chronicity of hepatitis B virus infection. 
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Introduction 
With a 3.2 Kb genome, hepatitis B virus 
(HBV) is the smallest DNA virus that infects 
humans. The virus has a double-stranded DNA 
genome with four open reading frames: P, C, S 
and X. The S region encodes three gene 
products, Pre-S1, Pre-S2 and small (S) 
envelope proteins. These proteins are usually 
detected serologically as hepatitis B surface 
antigen (HBsAg), and they are involved in 
receptor binding, viral assembly and secretion. 
They are also important targets for immune 
mediated virus elimination (1) and several 
immune epitope specific for B, Th and CTL 
within the surface protein have been described 
(2-5). Antigenicity of HBsAg is dependent 
upon this complex structure. The anti-HBs 
(antibody to HBsAg) response following 
natural infection or after immunization 
comprises mainly antibodies that recognize the 
major hydrophilic region (MHR) of the 
protein. This comprises amino acids 99–160 
that encompass the group-specific ‘a’ 
determinant, an epitope recognized by a 
variety of antibodies. Moreover, standard 
HBV subtyping and genotyping is based on 
the "a" determinant (6, 7). 

The diversity of clinical syndromes and 
disease manifestations associated with HBV 
strongly suggest that the outcome of this 
infection is determined by the quality and 
vigor of the antiviral immune response 
produced by infected individual. The 
pathogenic mechanisms responsible for liver 
cell injury in HBV infection are not well 
understood, though it appears that the virus is 
not directly cytopathic for the infected liver 
and a strong immune reaction kills a large 
numbers of hepatocytes to clear the virus. This 
leads to the pathologic consequences as acute 
and chronic hepatitis failure as well as 
cirrhosis.  

In chronic carriers, the specific T cell 
response is significantly weaker, in contrast to 
acute phase, and in many patients, is 
undetectable (8). The T cell response 
ineffectiveness in the pathogenesis of chronic 
HBV infection has been attributed to the 
several factors: genetic background of the 
host, clonal tolerance, T cell energy (due to the 

high antigen load), CTL exhaustion, a Th2 
type response instead of Th1, etc. In this 
scenario, the escape mutants within immune 
epitopes of HBV constitute a significant role 
and isolated cases of infection with HBV 
variants bearing substitutions in these regions, 
are predicted to escape from immune 
surveillance have been reported (immune-
escape variants) (9-14). There have also been 
cases of infection that have been missed 
because of failure of current serological assays 
to detect some variant forms of HBsAg 
(diagnostic-escape variants) (15-18).  

The aim of this study was to analyze the 
surface gene and protein sequences of chronic 
carriers in the early phase of chronicity (either 
before or soon after eAg seroconversion) and 
to allocate the pattern of variations distribution 
to their clinical/serologic pictures. 

 
Materials and Methods 
Sera 
As a representative and eligible sample of 
various districts, by means of stratified multi-
stage cluster sampling design, 18 HBsAg-
positive chronic in-active carriers were 
recruited from Hormozgan province, Iran. The 
study population comprised sera collected 
during 2008. Patients were included in this 
study if they had HBsAg more than 6 months, 
with levels of ALT around the normal range. 
All patients were negative for antibodies 
against hepatitis C, hepatitis D and human 
immunodeficiency virus.  To avoid bias on the 
mutational analysis, the patients needed to be 
HBeAg positive or at the early stage of anti-
HBe seroconversion. Trained health care and 
field staff implemented standard 
questionnaires to collect data on demographic 
characteristics such as gender, age, 
educational, economic status, residency and 
horizontal/vertical transmitted risk factors to 
HBV. Aliquots (5 ml) of whole blood samples 
were withdrawn from each participant. Serum 
was, aseptically, separated in the field by 
centrifugation at 2000 rpm for 5 min, stored        
at -80 °C until tested. HBV serological markers 
including HBsAg and anti-HBs were 
examined by ELISA kits manufactured by 
Organon Technika, Holland. Prior informed 
consent was obtained from all patients before 
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bleeding. All the procedures carried out in the 
Hepatitis B laboratory, Department of 
Virology, TUMS. 

 
DNA extraction 
HBV DNA was extracted from a 200 µl of 
aliquot of sera using Qiagen Mini Blood Kit 
(Qiagen, Hilden, Germany) according to 
manufacturer’s instruction. In brief, 20 µl of 
protease added to the serum in a 1.5 ml tube. 
Then, 200 µl of Al buffer added to each tube, 
vortexed and incubated for 10 min at 56 °C. 
For DNA precipitation, 200 µl of ethanol was 
added to the mixture, centrifuged for 1 min. 
Components transferred to a collection tube 
containing filter tube. Trapped DNA was 
washed in two steps by AW1 and AW2 buffers 
to eliminate puririties together with 
centrifugation after each step. Finally, DNA 
was eluted using 100 µl of elution buffer, and 
stored at -20 °C. 

 
Polymerase chain reaction 
The surface gene was amplified using two pairs 
of primers (Table 1). A nested PCR reaction was 
carried out in 100 µl of a mixture containing 5 µl 
of DNA using HotStart Taq PCR            
(Qiagen, Hilden, Germany) according to 
manufacturer’s instruction. The cycling profile 
for the first round PCR was one cycle of  95 °C 
for15 min, 94 °C for 1 min, 50 °C for 1 min, and 
72 °C for 1 min followed by 40 cycles.  For the 
second round of PCR, 1 µl of the first round 
PCR product was added to the reaction mixture 
with the same compositions of the first round 
except that S1 and S2 were replaced by S6 and 
S7 primers. The thermal profile was the same as 
first round except that cycling number was            
30 cycles. Finally, 3 µl of the second round PCR 
products were analysed by electrophoresis in 1% 
agarose gel, stained by ethidium bromide, and 
visualized under UV light. 
 
DNA sequencing 
 The HBsAg subtype of the sequences was 

defined by substitutions in the 'a' determinant 
between codons 122 and 160 inclusive. Direct 
sequencing of surface genes was carried out 
(Perkin Elmer ABI-3130XL DNA Sequencer, 
Fostercity, CA, USA) using 0.5 µl of appropriate 
primers S6 and S7 for surface gene. The results 
were analysed using Chromas and BioEdit 
softwares. Genotyping was carried out on 
samples using the region of surface gene 
specifying HBV genotypes/subtypes 
 
Sequence analysis 
After allocating a sequence to an HBV genotype 
by analysis of the S gene, the discovered surface 
gene amino acid/nucleotide variations were 
compared with a reference sequence obtained 
from Okamoto (1988, accession mumber, 
AB033559) and HBsAg sequences from Iranian 
isolates obtained from GenBank and NCBI. 
Comparing to the former, any amino acid 
changes defined as “variant” (host HLA-
determined). With regards to the latter (Iranian 
database sequences), amino acid differences 
defined as “mutation”.  

Sequences have been submitted to GenBank, 
numbered from GU938305 to GU938322. 
 
Phylogenetic analysis 
The evolutionary history was inferred using the 
Neighbor-Joining method. The bootstrap 
consensus tree inferred from 1000 replicates was 
taken to represent the evolutionary history of the 
taxa analyzed. The evolutionary distances were 
computed using the Kimura 2-parameter 
method, and were in the units of the number of 
base substitutions per site. Codon positions 
included were 1st+2nd+3rd+Noncoding. All 
positions containing gaps and missing data were 
eliminated from the dataset (Complete deletion 
option). There were a total of 681 positions in 
the final dataset. Phylogenetic analyses were 
conducted in MEGA4. 
 
 

 
Table 1. Oligonucleotide primers used for PCR and sequencing. Base positions numbered from the EcoRI site.  
 

Primer Sequence 5'         3' of Oligonucleotides Base Position Type 
S1 CCT GCT GGT GGC TCC AGT TC 56-75 Sense 
S2 CCA CAA TTC (K)TT GAC ATA CTT TCC A (K=G/T) 1003-979 Anti-sense 
S6 GCA CAC GGA ATT CCG AGG ACT GGG GAC CCT G 113-146 Sense 
S7 GAC ACC AAG CTT GGT TAG GGT TTA AAT GTA TAC C 857-823 Anti-sense 
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Results 
Totally, 19 HBsAg-positive patients infected 
with HBV were enrolled in this study, 
who all were native residents of Isfahan 
province (center of Iran). The group studied 
consisted of inactive hepatitis B carriers. 6 
(31.6%) were female and 13 (68.4%) were 
male with a mean age of 39 years.  

 
Phylogenetic analysis 
The results of the phylogenetic tree revealed 
that Iranian HBV isolates from Isfahan were of 
genotype D, supported by 95% bootstrap value 
(1,000 replicates) (Fig. 1). Only one isolate (207) 
belonged to subgenotype D3, the rest contained 
D1. In the phylogenetic tree, a genotype E 
sequence (accession number AB091266) was 
chosen for out grouping. It is noteworthy that 3 
isolates branched into 3 individual subclusters 
(210, 214 and 215). Samples 210 and 215 

contained at least one amino acid substitution in 
“a” determinant. The rest of sequences 
branched into different lengths of clusters, 
maily in pairs (Figure 1). 
 
Substitutions in comparison with reference 
genotype D (Okamoto, AB033559) 
The surface gene of 18 HBV isolates was 
amplified to identify the genotypes and other 
mutations located in the surface region. Overall, 
comparing with reference sequence (Okamoto, 
1988), at the nucleotide level, a total of 162 
changes occurred (Table 2). At the amino acid 
levels, all contained A70P compared to 
Okamoto reference (Table 3). We believe that 
this substitution was assigned as “variant” (see 
materials and methods). All strains belonged to 
genotype D (100%), subgenotype D1 (100%) 
and subtype ayw2 (100%). 
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Figure 1. Neighbour joining phylogenetic trees of surface genes sequences from18 samples. 
 
Note: S gene tree rooted with sequence AB049609 (reference genotype C). All Iranian isolates were compared to 
sequence AB033559 (reference genotype D, see the text). The scale denotes percentage diversity. Coding numbers 
indicate samples that have been analysed in the figure. The percentage of replicate trees in which the associated 
taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. Branches 
corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. 
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Table 2. Alignment of complete nucleotide sequences of HBsAg from 18 sera.  
Note: Nucleotides are numbered from the beginning of the HBsAg using the single letter code. Sample 324 had 3 nucleotides insertion, therefore, using Bioedit software (Clustal W 
alignment) 3 extra nucleotides were added at positions 337-339 for a proper alignment. 
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Table 3. Alignment of complete amino acid sequences of HBsAg which shows genotype/subtype identification and other variations of 18 sera.  
Note: Amino acid residues are numbered from the beginning of the HBsAg using the single letter code. Apart from sample 324, which had one amino acid insertion, all the 
other samples had 226 amino acids, therefore, using Bioedit software (Clustal W alignment) 1 extra amino acid was added at positions 114 for a proper alignment. 
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Table 4. The levels of mutation rates between isolates deduced from the number and the percentage of individual sequences. 

Sample Code Mutations Pos. Missense Mutation Pos. Amino Acid Change No. Mutation Rate 
308 - - - 0 0.00% 
309 - - - 0 0.00% 
310 - - - 0 0.00% 

312 
G36T, T339C, C420A , 
T426C, C432T, G611A, 

A617G, G620A 

G611A, A617G, G620A S204N, Y206C, S207N 8 1.17% 

313 T135A, T330C, C632T, C632T, P211L 3 0.44% 

318 

G42A, T135C, A201G, 
C246A, T318G, C428T, 
G476C, C566T, C578T, 

T581C, T666C 

C428T, C566T,  C578T, 
T581C 

S143L, G159A, T189I, S193L, V194A 11 1.61% 

319 T22C, C39G, T310C, T378G T22C, C39G F8L, L12V 4 0.59% 

321 G36T, G71A, T146G, C313G, 
T339C 

G71A, T146G, C313G R24K, L49R, P105A 5 0.73% 

324 
A303G, G334A, G335A,  
{335CAA336}*, T337A, 

C338A, C345A, C420A, G20A 

[A303G, G334A],  
{335CAA336}*, 

[T337A, C338A], G20A 

{112N}*, G112+1K, S113+1N, S207+1N 11 1.61% 

325 T135C   1 0.15% 
335 C513T   1 0.15% 
336 C513T, G573C G573C W191C 2 0.29% 
337 C379A, C513T, T530C C379A, T530C P127T, V177A 3 0.44% 

338 C246A, T339C, C428T, 
C465A, T612A 

C428T, T612A S143L, S204P 5 0.73% 

354 

G36T, G131A, T135C, T146G, 
C246A, T339C, T378C, 
C428T, C465A, T612A, 

A617G, G620T 

T612A, A617G, G620T, 
T135C, T146G, C428T 

G44E, L49R, S143L, S204R, Y206C, 
S207I 

12 1.76% 

356 G36T, T339C, C432T, T551C T551C V184A 4 0.59% 

357 G42A, T135C, T318G, A357T, 
T339G, C465A 

  6 0.88% 

358 G573C   1 0.15% 

Average - - - 4.28 0.63% 



HBsAg in Chronic Hepatitis B Carriers 
 

Iran J Basic Med Sci, Vol. 13, No. 4, Autumn 2010   221 

 
 
 
 
 
 
Table 6. Amino acid mutations within HBsAg of patient groups. B cell, T helper and CTL epitopes areas with their boundaries and wild type variants indicated at top. 
Amino acids are described by single letter code and numbered from the beginning of HBsAg. 

 

Bandar Abbas Th Epitope  
CTL Epitope B Epitope 

Sample code Amino Acid Position 24 44 49 189 191 193 194 177 184 206 207 105 112 112+
1 113+1 127 143 159 

Wild Type R G L T W S V V V Y S P - G K P S G 
308                   
309                   
310                   
312          C N        
313                   
318    I  L A          L A 
319                   
321 K  R         A       
324           N  {N}* S N    
325                   
335                   
336     C              
337        A        T   
338          Y R      L  
354  E R              L  
356         A          
357                   
358                        
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Nucleotide and amino acid substitutions 
In comparison with Iranian sequences obtained 
from the database as well as from our 
unpublished data, the sequences of the strains 
showed some variabilities over the regions 
sequenced (Tables 2, 3). In all, 77 “mutations” 
occurred at 45 nucleotide positions, of them, 44 
(57.14%) were silent (no amino acid altering) 
and 33 (42.86%) were missense (amino acid- 
altering). Sample 324 contained an insertion of 
CAA at the nucleotide level that results to 
insertion of N at the amino acid level in the 
position 112. Table 4 shows the comparison 
between nucleotide and amino acid variations 
for the isolates. Further, it was possible to 
identify the level of S proteins evolution 
between isolates by measuring the mutation rate 
of individual sequences. The average mutation 
rate of all sequences was 4.28 (0.63%) according 
to the number of mutations per site (Table 4).  

 
Mutations within immune epitopes 
According to the proposed residues of immune 
epitopes within the HBV surface protein 
(Table 5), 24 (80%) out of 30 amino acid 
changes occurred in different immune epitopes 
within surface protein, of which were, 9 (30%) 
in B cell epitopes in 7 residues (2 occurred in 
“a” determinant region; 8 (42.1%) in T helper 
epitopes in 7 residues and 7 (10%) in 4 
residues inside CTL epitopes (Table 6). Within 
B cell epitopes, 3 samples contained mutations 
in position 143. Similarly, in CTL epitopes, 
two samples had mutations at positions 206 
and 207, 2 for each of them.  
 
Table 5. Proposed antigenic epitopes within HBsAg.  
Note: Numbers indicate amino acid residues within the 
surface protein. B, Th and CTL represent B-cell, T 
helper and CTL epitomes, respectively. 

Discussion 
For a non-cytopathic virus (such as HBV) to 
persist, it must be able to evade immune 
surveillance; there must be either an 
ineffective antiviral immune response, or the 
virus must escape an otherwise efficient 
response. All of these might be involved in 
HBV persistence. The aim of this study was to 
characterize the mutational patterns of surface 
protein in chronic HBV carriers. Of 18 
sequences, 11 contained different mutations 
within the surface protein. Of the total 77 
substitutions at the nucleotide level, 46 (60%) 
were silent (no amino acid changing) and 32 
(40%) were missense (that changed the amino 
acid). The ratio between silent and missense 
mutations in 11 sequences indicated that these 
proteins were under a significant selection 
pressure which had already been applied by 
both arms of cytotoxic and humoral host 
immune system: 27 (90%) out of 30 amino 
acid changes occurred in different immune 
epitopes, of which, 9 (30%) in B cell epitopes 
in 6  residues (2 occurred in “a” determinant 
region); 8 (26.6%) in T helper epitopes in 7 
residues and 10 (33.3%) in 5 residues inside the 
CTL epitopes . Compared to other immune 
epitope mutations in this study which distributed 
in different residues, the occurrence of 10 CTL 
epitope changes in only 5 amino acid residues 
suggested a narrowly-focused immune selection 
pressure at a hotspot position for this selection. 
The latter finding was in consistence with the 
findings of other authors, especially in genotype      
D- infected patients (19-21). 

Occurrence of genomic variation (especially 
in immune epitopes) is a reflection of virus-
host adaptation. Appropriate reactivity of          
T-helper cells is a prerequisite for adequate 
anti-HBs production after infection with HBV, 
as well as after hepatitis B vaccination (22). 
Thus, the T-cell epitopes of HBsAg being 
targets for recognition by T cells should also 
be affected (23). In chronic HBV patients, the 
transition from a relative immune tolerance 
state to the activation of the immune system 
with generation of anti-HBe results in a strong 
selection on the viral genome, causing changes 
in immune targets, i.e. T and B cell epitopes 
that could lead to escape of the virus from 

Reference HLA 
restricton 

Cell 
subsets 

Sequence 

Honorati Not HLA 
restriction 

B 100-160 

Ducos-1996 ClassΠ CD4 T 19-28 
Mancini-2006 ClassΠ CD4 T 21-65 
Ducos-1996 ClassΠ CD4 T 80-98 
Mancini-2006 ClassΠ CD4 T 186-197 
Ducos-1996 ClassΠ CD4 T 215-223 
Barnab-1994 ClassІ CD8 T 171-179 
Mancini-2006 ClassІ CD8 T 175-184 
Mancini-2006 ClassІ CD8 T 206-215 
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immune clearance. Some mutations are able to 
impair the binding of neutralizing antibodies to 
the viral surface (especially at “a” determinant 
region); viruses carrying such mutated T-cell 
epitopes cannot be recognized by specific        
T-cells of an individual, hence, will not 
enhance anti-HBs production (23), this could 
be led to the progression of chronicity of 
hepatitis B virus infection. 

The relative importance of such mutations in 
different immune epitopes within HBV 
proteins in the pathogenesis of chronic HBV is 
a matter of debates. In terms of HBV proteins, 
some authors believe that CTL epitopes have a 
major role; a majority of chronic HBV carriers 
contained mutated residues within CTL 
epitopes (24-28). Others, however, showed 
that these mutations occurred in the Th/B cell 
epitopes (29-34). In vitro, we already showed 
that intracellular localization of HBcAg 
depended on the presence of mutations in 
different hepatitis B core gene B cell epitope 
mutations. Of 26 cloned samples, HBcAg was 
predominantly localized in nucleus in 13 

samples in remission phase (as HBcAg is a 
nuclear antigen) and in cytoplasm in other 13 
samples with active hepatitis. All samples with 
cytoplasmic localization contained B cell 
epitope mutations. Reversion of mutant 
sequences with cytoplasmic expression back to 
the wild type by mutagenesis led to shifting 
back to nuclear distribution (35).  

 
Conclusion 
In our study, the distribution of mutations 
within the surface protein (as an immune 
target for the host T cell surveillance) was not 
random and they were clustered in certain 
immune epitopes. Pattern of mutants 
distribution in immune epitopes deserves 
testing the phenotypic pictures using in vitro 
assays for further elucidation of the 
pathogenesis of HBV chronicity. 
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