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Abstract

Although there is evidence of the involvement of N-methyl-D-aspartate
receptors (NMDAR) in the action of lithium, its role in the antidepressant
effects of lithium in a behavioural model remains unclear. In this study,
we evaluated the effects of NMDAR antagonists on the antidepressant-like
effects of lithium in the mouse forced swimming test. Lithium (30 and
100 mg/kg, i.p.) significantly (P < 0.01) reduced the immobility times of
mice, whereas at lower doses (5 and 10 mg/kg) had no effect. NMDA
antagonists ketamine (2 and 5 mg/kg, i.p.), MK-801 (0.1 and 0.25 mg/kg,
i.p.) and ifenprodil (1 and 3 mg/kg, i.p.) significantly (P < 0.05) decreased
the immobility time. Lower doses of ketamine (0.5 and 1 mg/kg), MK-801
(0.01 and 0.05 mg/kg) and ifenprodil (0.1 and 0.5 mg/kg) had no effect.
Combined treatment of subeffective doses of lithium (10 mg/kg) and
ketamine (1 mg/kg), MK-801 (0.05 mg/kg) or ifenprodil (0.5 mg/kg)

robustly (P < 0.001) exerted an antidepressant-like effect. The
noneffective dose of a NMDA agonist (NMDA, 75 mg/kg, i.p.) prevented
the antidepressant-like effect of lithium (30 mg/kg). None of the drugs at
subactive doses or in combination with lithium had significant effect on
the locomotor activity in the open field test. We for the first time
suggested a role for NMDAR signalling in the antidepressant-like effects of
lithium, providing a new approach for treatment of depression.
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Introduction

Lithium was first used as a mood stabiliser in the 19th century
and was then rediscovered in 1949 by the Australian psychia-
trist John Cade (Cade, 1949; Schou, 2001). Initially lithium was
assumed to have a weak antidepressant effect, but several con-
trolled studies have later supported its antidepressant efficacy
(Bauer, et al., 2000; Bauer and Mitchner, 2004; Heninger,
et al., 1983; Worrall, et al., 1979). Depression associated with
bipolar disorder has been regarded to be more severe and diffi-
cult to treat, and lithium treatment is beneficial (Bourin and
Prica, 2007; Freeman and Freeman, 2006; Mendels, et al.,
1972). Although antidepressant effects of lithium have been
more clearly demonstrated in depressed bipolar patients than
in unipolar patients (Baron, et al., 1975; Bourin and Prica,
2007), initial open trials (Johnson, 1974; Worrall, et al., 1979)
and double-blind controlled studies found that lithium is
effective for unipolar depression as well (Bauer, et al., 2000;
Freeman and Freeman, 2006; Goodwin, et al., 1972; Mendels,

et al., 1972; Soares and Gershon, 1998). It was even found to
be as effective as antidepressants (Kleindienst and Greil, 2003;
Mendels, et al., 1972; Soares and Gershon, 1998; Worrall,
et al., 1979). However, no definitive mechanism for the antide-
pressant effects of lithium has been established yet. In-vivo and
in-vitro studies showed that lithium exerts multiple effects on
neurotransmitter/receptor-mediated signalling, ion transport,
signal transduction cascades, hormonal and circadian regula-
tion and gene expression (for a review, see Jope, 1999, 2003;
Quiroz, et al., 2004). In recent years, some investigators have
shown that glutamatergic N-methyl-D-aspartate (NMDA)
receptor signalling could be a target for the action of lithium
(Basselin, et al., 2006; Hashimoto, et al., 2002; Ma and Zhang,
2003; Ma, et al., 2004; Nonaka and Chuang, 1998; Nonaka,
et al., 1998). For instance, it has been shown that pretreatment
with different doses of lithium for various periods significantly
prevented the glutamate-induced, NMDA-mediated excitation
in cultured rat cerebellar granule, cerebral cortical and hippo-
campal neurons (Nonaka and Chuang, 1998). This effect of
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lithium has been shown to be due to its inhibitory effect on the
activity of NMDA receptor and thereby calcium influx into the
neurons (Hashimoto, et al., 2002; Nonaka and Chuang, 1998).
However, the exact role of NMDA receptor signalling in the
therapeutic effects of lithium is as yet unidentified.

NMDA receptors are the most complex of the ionotropic
receptors. Through this ligand-gated cation channel, Ca2+

transfer from extracellular medium into the receptive neurons
is mediated, resulting in the activation of several signalling
pathways such as activation of nitric oxide synthase (Esplu-
gues, 2002; Paul and Skolnick, 2003). Studies from several
laboratories have implicated the NMDA receptors in the
pathophysiology of major depression and the mechanism of
action of antidepressant treatment (Paul, et al., 1994; Petrie,
et al., 2000). Several lines of evidence also suggest that
NMDA receptor signalling could be used as a novel target of
antidepressant action (Almeida, et al., 2006a,b; Layer, et al.,
1995; Maj, et al., 1992b; Rosa, et al., 2003; Trullas, et al.,
1991; Trullas and Skolnick, 1990) in the mouse forced swim-
ming test (FST), a preclinical behavioural paradigm that is
widely used to test compounds for antidepressant activity
(Cryan, et al., 2002; Porsolt, et al., 1977). When animals are
exposed to the FST, they typically adopt an immobile posture,
which is thought to reflect a state of behavioural despair or
helplessness (Porsolt, et al., 1977). Antidepressants reduce
immobility by increasing escape-motivated behaviours in the
FST paradigm (Lucki, et al., 2001). Moreover, some studies
have also shown that NMDA receptor antagonists display an
antidepressant-like behavioural profile in the mouse FST
(Almeida, et al., 2006a,b; Layer, et al., 1995; Maj, et al.,
1992b; Rosa, et al., 2003; Trullas, et al., 1991; Trullas and
Skolnick, 1990). However, animal behavioural studies using
lithium in the FST support the antidepressant properties of
lithium (O’Brien, et al., 2004; Redrobe and Bourin, 1999a).
Pretreatment with lithium can augment the effect of various
antidepressants in the FST (Hascoet, et al., 1994; Nixon,
et al., 1994). However, the exact mechanism of action of the
antidepressant-like effect of lithium in this model is not fully
understood. Therefore, in the current study, using various
NMDA receptor antagonists, we investigated whether
NMDA receptor signalling is involved in the antidepressant-
like effect of acute lithium administration in the mouse FST.

Materials and methods

Animals

Male Naval Medical Research Institute (NMRI) mice weight-
ing 23–30 g (Pasteur Institute) were used throughout the study.
Animals were housed in groups of four to five and were
allowed free access to food and water except for the short
time while animals were removed from their cages for testing.
All behavioural experiments were conducted between 12:00–
15:00 h with normal room light (12-h regular light/dark cycle)
and temperature (22 ± 1 °C). All procedures were carried out in

accordance with the institutional animal care and use commit-
tee (Department of Pharmacology, School of Medicine, Tehran
University of Medical Sciences [TUMS]) guidelines for animal
care and use. This study was approved by the Ethics Commit-
tee of TUMS. Each animal was used only once, and each
experimental group consisted of at least 10 animals.

Open-field locomotor activity

Before the FST, the ambulatory behaviour of mice was
assessed in an open-field test (Ghasemi, et al., 2008; Kaster,
et al., 2005) to ensure that alterations in the duration of immo-
bility are not resultant from the changes that occur in motor
activity. The apparatus consisted of a wooden box measuring
40 × 60 × 50 cm. The floor of the arena was divided into 12
equal squares. The animals were gently placed in the centre of
the field, and the number of squares crossed with all paws
(crossing) was counted in a 6-min session.

Forced swimming test

The test was conducted using the method of (Porsolt, et al.,
1977) and according to our previous study (Ghasemi, et al.,
2008). Mice were individually placed in an open cylindrical
container (diameter 10 cm, height 25 cm), containing 19 cm of
water at 23 ± 1 °C. Mice were allowed to swim for 6 min. Each
mouse was judged to be immobile when it ceased struggling
and remained floating motionless in the water, making only
those movements necessary to keep its head above water. The
duration of immobility was recorded during the last 4 min of
the test.

Drugs and treatment

The following drugs were used in the study: lithium chloride,
NMDA (N-methyl-D-aspartic acid), ketamine hydrochloride,
dizolcipine (MK-801) and ifenprodil tartrate (Sigma, Bristol,
UK). All drugs were dissolved in saline. All solutions were pre-
pared before the experiments, and all injections were adminis-
tered intraperitoneally (i.p.) in a constant volume of 5 ml/kg
body weight. Lithium chloride (5, 10, 30 and 100 mg/kg) was
administered 30 min before the FST in separate groups. At this
step, both the per se noneffective and potent doses of lithium
were determined for assessment in our next experiments.

For evaluating the effects of MK-801 (0.01, 0.05, 0.1 and
0.25 mg/kg), ifenprodil (0.1, 0.5, 1 and 3 mg/kg) and ketamine
(0.5, 1, 2 and 5 mg/kg) in the mouse FST, the drugs were
administered 45 min before the test in different experimental
groups of animals. In the current study, the doses of these
drugs were chosen based on a pilot study and in accordance
with previous studies (Ghasemi, et al., 2008; Rosa, et al.,
2003; Trullas and Skolnick, 1990). In these experiments, the
noneffective doses of MK-801, ifenprodil and ketamine were
determined for the next experiments.
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For evaluating the possible involvement of the activation of
NMDA receptors in the effect of lithium in the FST, the non-
effective (subactive) doses of each of MK-801, ifenprodil and
ketamine were separately administered 15 min before adminis-
tration of noneffective (subactive) dose of lithium chloride.
Thirty minutes after lithium administration, animals were
assessed in the FST.

In the last step, we further evaluated the effect of a nonef-
fective dose the NMDA receptor agonist (NMDA, 75 mg/kg,
i.p.; Poleszak, et al., 2007) on the antidepressant-like effect of a
potent dose of lithium in the FST. In this regard, NMDA
(75 mg/kg, i.p.) was injected into the animals 30 min before
the lithium administration. Thirty minutes after lithium injec-
tion, animals were assessed in the FST.

Statistical analysis

Comparisons between experimental and control groups were
performed by one-way or two-way ANOVA followed by
Newman–Keuls test when appropriate. A value of P < 0.05
was considered to be significant.

Results

The results depicted in Figure 1 show that the administration
of lithium chloride decreased the immobility time of mice in
the FST. ANOVA showed a significant effect of lithium
(F4,70 = 4.927, P < 0.01). Lithium chloride at the doses of 30
and 100 mg/kg (P < 0.01) significantly decreased the immobil-
ity time in the FST, whereas at the doses of 5 and 10 mg/kg

produced no significant anti-immobility effect. Different doses
of lithium chloride had no significant effect on the locomotor
activity of mice in the open field test (F4,70 = 0.643, P > 0.05;
data not shown).

As shown in Figure 2A, the administration of different
doses of MK-801 had anti-immobility effects on mice in the
FST (F4,50 = 3.931, P < 0.01). MK-801 at the doses of 0.1 and
0.25 mg/kg (P < 0.05) significantly decreased the immobility
time in the FST, whereas at the doses of 0.01 and 0.05 mg/kg
produced no significant anti-immobility effect. Figure 2B
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Figure 1 Effect of acute administration of lithium chloride (5–100 mg/kg,
i.p.) on the FST in mice. Lithium chloride was administered 30 min before
the test. **P < 0.01 compared with the saline-treated control. Values are
expressed as mean ± SEM (n = 15) and were analysed using a one-way
ANOVA followed by Newman–Keuls test.

MK-801 (mg/kg)
0 (Saline) 0.01 0.05 0.1 0.25

Im
m

ob
ili

ty
 T

im
e 

(s
ec

)

50

100

150

200

250

* *

MK-801 (mg/kg)
0 (Saline) 0.01 0.05 0.1 0.25

Sq
ua

re
d

En
te

re
d

0

20

40

60

80

100

120

*

A

B

Figure 2 (A) Effect of acute administration of MK-801
(0.01–0.25 mg/kg, i.p.) on the FST in mice. MK-801 was administered
45 min before the test. (B) Effect of acute administration of lithium
chloride (0.01–0.25 mg/kg, i.p.) on the locomotor activity of mice in the
open field test. Values are expressed as mean ± SEM (n = 10) and were
analysed using a one-way ANOVA followed by Newman–Keuls test.
*P < 0.05 compared with the saline-treated control.
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shows that different doses of MK-801 significantly altered the
locomotor activity of mice in the open field test (F4,50 = 2.868,
P < 0.05). The dose of 0.25 mg/kg significantly (P < 0.05)
decreased the locomotor activity, whereas lower doses had no
significant effect on the locomotor activity of mice in the open
field test.

As shown in Figure 3, the administration of different doses
of ifenprodil had anti-immobility effects on mice in the FST
(F4,50 = 4.418, P < 0.01). Ifenprodil at the doses of 1 mg/kg
(P < 0.05) and 3 mg/kg (P < 0.01) significantly decreased the
immobility time in the FST, whereas at the doses of 0.1 and
0.5 mg/kg produced no significant anti-immobility effect. In
addition, different doses of ifenprodil had no significant effect
on the locomotor activity of mice in the open field test
(F4,50 = 0.634, P > 0.05; data not shown).

As shown in Figure 4A, the administration of different
doses of ketamine had anti-immobility effects on mice in the
FST (F4,50 = 4.352, P < 0.01). Ketamine at the doses of 2 and
5 mg/kg (P < 0.05) significantly decreased the immobility time
in the FST, whereas at the doses of 0.5 and 1 mg/kg produced
no significant anti-immobility effect. In addition, different
doses of ketamine had no significant effect on the locomotor
activity of mice in the open field test (F4,50 = 1.369, P > 0.05;
data not shown).

Figure 5A shows that combination of per se noneffective
doses of MK-801 (0.05 mg/kg) and lithium chloride
(10 mg/kg) significantly (P < 0.001) exerted an antidepressant-
like effect in the FST (F3,36 = 7.690, P < 0.001). Two-way
ANOVA showed significant effects for lithium injection
(F1, 39 = 28.645, P < 0.001), MK-801 treatment (F1,39 = 11.498,

P < 0.01), and lithium × MK-801 treatment (F3,39 = 4.317,
P < 0.05). A similar result was obtained when both per se non-
effective doses of ifenprodil (0.5 mg/kg) and lithium chloride
(10 mg/kg) were administered before the FST (F3,36 = 6.647,
P < 0.01; Figure 5B). Two-way ANOVA showed significant
effects for lithium injection (F1,39 = 27.557, P < 0.001), ifenpro-
dil treatment (F1,39 = 15.445, P < 0.01), and lithium × ifenpro-
dil treatment (F3,39 = 4.117, P < 0.05). Moreover, combination
of per se noneffective dose of ketamine (1 mg/kg) and lithium
chloride (10 mg/kg) had a significant (P < 0.001) anti-
depressant like effect in the mouse FST (F3,36 = 6.647,
P < 0.01; Figure 5C). Two-way ANOVA showed significant
effects for lithium injection (F1,39 = 19.808, P < 0.001), keta-
mine treatment (F1,39 = 11.304, P < 0.01), and lithium × keta-
mine treatment (F3,39 = 3.865, P < 0.05). Compared with
saline/saline-treated animals, concurrent administration of lith-
ium chloride (10 mg/kg) with either MK-801 (F3,36 = 0.605,
P > 0.05) or ifenprodil (F3,36 = 0.693, P > 0.05) or ketamine
(F3,36 = 0.608, P > 0.05) did not alter the locomotor activity
of mice in the open field test (data not shown).

Figure 6 shows that pretreatment with the noneffective dose
of the NMDA receptor agonist NMDA (75 mg/kg, i.p.) signif-
icantly (P < 0.05) prevented the antidepressant-like effect of
lithium (30 mg/kg, i.p.) in the FST (F3,36 = 8.059, P < 0.001).
Compared with saline/saline-treated animals, concurrent
administration of lithium chloride (30 mg/kg, i.p.) with 75 mg/
kg NMDA (F3,36 = 0.563, P > 0.05) had no significant effect
on the locomotor activity of mice in the open field test (data
not shown).
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Figure 3 Effect of acute administration of ifenprodil (0.1–3 mg/kg, i.p.)
on the FST in mice. Ifenprodil was administered 45 min before the test.
Values are expressed as mean ± SEM (n = 10) and were analysed using a
one-way ANOVA followed by Newman–Keuls test. *P < 0.05 and **P < 0.01
compared with the saline-treated control.
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Figure 4 Effect of acute administration of ketamine (0.5–5 mg/kg, i.p.)
on the FST in mice. Ketamine was administered 45 min before the test.
Values are expressed as mean ± SEM (n = 10) and were analysed using a
one-way ANOVA followed by Newman–Keuls test. *P < 0.05 compared with
the saline-treated control.
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Discussion

Using the Porsolt FST, which is the most widely used screening
tool for antidepressant activity in rodents (Cryan, et al., 2002;
Porsolt, et al., 1977), we demonstrated that acute lithium
administration exerted an antidepressant-like effect and caused
a decrease in the immobility of mice. This effect of lithium was
significant at the doses of 30 and 100 mg/kg, whereas lower
doses of lithium (5 and 10 mg/kg) had no significant
antidepressant-like effect. These results are in agreement with
our recent study (Ghasemi, et al., 2008) and previous studies
that have shown that either acute or chronic lithium treatment
decreases the immobility time in the FST alone or in combina-
tion with other antidepressant agents (Bersudsky, et al., 2007;
Cryns, et al., 2007; Gould, et al., 2008; Hascoet, et al., 1994;
Nixon, et al., 1994; O’Brien, et al., 2004; Redrobe and Bourin,
1999a,b; Shaldubina, et al., 2006; Silva, et al., 2008). This effect
of lithium in the FST could represent a parallel to the mood
stabilising action of lithium on the depressive phase of bipolar
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Figure 5 Pretreatment with (A) MK-801 (0.05 mg/kg, i.p.), (B) ifenprodil
(0.5 mg/kg, i.p.) or (C) ketamine (1 mg/kg, i.p.) 15 min before
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Figure 6 Pretreatment with the NMDA receptor agonist NMDA (75 mg/kg,
i.p.) 30 min before administration of lithium (30 mg/kg, i.p.), increased
the immobility time of mice in the FST at 30 min after lithium
administration. ***P < 0.001 compared with the saline/saline control;
+P < 0.05 compared with saline/lithium (Li, 30 mg/kg, i.p.)-treated group;
ns means nonsignificant compared with saline/saline group. Values are
expressed as mean ± SEM. Each group consisted of ten animals.

administration of lithium (10 mg/kg, i.p.) exerted a significant decrease in
the immobility time of mice in the FST at 30 min after lithium
administration. ***P < 0.001 compared with the saline/saline control;
#P < 0.05 and ##P < 0.01 compared with saline/lithium (10 mg/kg) group;
+P < 0.05 and ++P < 0.01 compared with saline/corresponding NMDA
antagonist; ns means nonsignificant. Values are expressed as mean ± SEM.
Each group consisted of ten animals.
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disorder in humans (Bourin and Prica, 2007) and to the effects
of antidepressants on learned helplessness (Sherman and Petty,
1980) and immobilisation stress in rats (Hata, et al., 1995).
Moreover, it was shown that lithium could exert
antidepressant-like effect in a variety of animal models of
depression including the tail suspension test (TST) (Cryns,
et al., 2007; Gould, et al., 2008), learned helplessness (Faria
and Teixeira, 1993; Teixeira, et al., 1995), olfactory bulbecto-
mized rat (Song, et al., 1994; van Riezen, et al., 1977), immo-
bilisation stress (Kofman, et al., 1995), muricidal behaviour
induced by midbrain lesions in rats (Yamamoto, et al., 1985),
desynchronisation of reserpine-induced depression (Zamosh-
china and Saratikov, 1997; Zamoshchina, et al., 1997) and
ouabain-induced behavioural changes in rats (Li, et al., 1997).
However, there are some discrepancies in the antidepressant-
like effect of lithium in the FST (Kitamura, et al., 2002; Wege-
ner, et al., 2003; Tomasiewicz, et al., 2006). For example,
Gould, et al. (2007) have recently reported that intraperitoneal
administration of 100 mg/kg of lithium chloride 30 min before
the FST did not result in the antidepressant-like action in mice.
The differences in these results could be due to a number of
factors such as differences in animal species or strain, experi-
mental designs, route and duration of lithium administration.
For instance, Gould, et al. (2007) used C57BL/6J mice in their
experiments, whereas we have used male NMRI mice.

During the past decade, converging lines of evidence have
led investigators beyond the monoaminergic synapse for strat-
egies to improve antidepressant therapy. Emerging from these
studies is a rapidly changing picture that may provide an
entirely new set of potential therapeutic targets. In this regard,
studies from several laboratories have implicated the NMDA
class of glutamate receptors in the pathophysiology of major
depression and the mechanism of action of antidepressant
treatment (Paul, et al., 1994; Petrie, et al., 2000). The initial
clue in this regard came from the studies that reported antide-
pressant effect of D-cycloserine, an antibiotic developed to
treat tuberculosis, which is a partial agonist at the glycine site
of the NMDA glutamatergic receptor (Crane, 1959, 1961;
Papp and Moryl, 1996). Additional work showed that other
NMDA receptor antagonists such as amantadine (Huber,
et al., 1999; Rogoz, et al., 2007; Stryjer, et al., 2003), meman-
tine (Ferguson and Shingleton, 2007; Muhonen, et al., 2008;
Munoz, et al., 2008) and ketamine (Berman, et al., 2000;
Goforth and Holsinger, 2007; Kudoh, et al., 2002; Liebrenz,
et al., 2007a,b; Maeng and Zarate, 2007; Ostroff, et al., 2005;
Zarate, et al., 2006) could exhibit antidepressant activity in
both unipolar and in bipolar depressed patients. However,
Trullas and Skolnick (1990) provided the first evidence of the
antidepressant-like effects of NMDA antagonists including
2-amino-7-phosphonoheptanoic acid, Dizolcipine (MK-801)
and 1-aminocyclopropanecarboxylicacid in the mouse FST
and TST. After that, many studies reported antidepressant-
like effects of a variety of NMDA receptor antagonists in ani-
mal models of depression such as mouse FST (Almeida, et al.,
2006a,b; Layer, et al., 1995; Maj, et al., 1992b; Rosa, et al.,
2003; Trullas, et al., 1991; Trullas and Skolnick, 1990), rat

FST (Garcia, et al., 2008; Maj, et al., 1992a,b,c; Moryl, et al.,
1993; Przegalinski, et al., 1997; Yilmaz, et al., 2002), mouse
TST (Kos and Popik, 2005; Panconi, et al., 1993; Trullas and
Skolnick, 1990), learned helplessness behaviour in rats (Meloni,
et al., 1993), chronic mild stress-induced deficits in sucrose con-
sumption in rats (Papp and Moryl, 1993, 1994, 1996) and
olfactory bulbectomized rats (Kelly, et al., 1997; Redmond,
et al., 1997). Consistently, Boyce-Rustay and Holmes (2006)
have recently reported that NMDA receptor subunit NR2A
knockout mice showed antidepressant-like profiles in the FST
and TST, as compared with the wild type controls. In the cur-
rent study, we also showed that the noncompetitive NMDA
antagonist ketamine at 2 and 5 mg/kg, the selective noncom-
petitive NMDA antagonist MK-801 at 0.1 and 0.25 mg/kg
and also the selective polyamine site NMDA antagonist ifen-
prodil at 1 and 3 mg/kg decreased the immobility time of mice
in the Porsolt FST, indicating that these drugs at these concen-
trations have antidepressant-like effects in the test. Our data
also indicated that these agents at active or subactive doses
had no effect on the locomotor activity in the open field test,
excluding the possibility that their antidepressant-like effects
are due to their adverse effects on the locomotor activity.

In the current study, we examined the effect of simultaneous
administration of lithium with MK-801, ifenprodil and keta-
mine in the FST. Our data showed that neither low doses of
NMDA antagonists (0.05 mg/kg MK-801, 0.5 mg/kg ifenprodil
and 1 mg/kg ketamine) nor low dose of lithium (10 mg/kg),
when administered independently, significantly affected the
immobility time of mice in the FST. However, when these
agents and lithium were combined at the same low doses,
they exerted a significant antidepressant-like effect in the
FST. We also demonstrated that the NMDA agonist NMDA
at a noneffective dose (75 mg/kg) prevented the antidepressant-
like effect of a potent dose of lithium (30 mg/kg). These results
could reflect the involvement of NMDA receptors in the
antidepressant-like effects of lithium in the FST and may also
provide a new evidence for the treatment of depression with
concurrent administration of low doses of lithium and glutama-
tergic NMDA receptor antagonists.

Biochemically diverse effects of lithium on the glutamater-
gic system have been identified by a number of groups (Anto-
nelli, et al., 2000; Bauer, et al., 2003; Dixon and Hokin, 1998;
Dixon, et al., 1994; Hokin, et al., 1996; Yildiz-Yesiloglu and
Ankerst, 2006). Specifically, these effects include evidence sug-
gesting a decrease in glutamate reuptake, decrease in glutamate
release and/or modulation of receptor levels. In 1998, Nonaka
and his co-workers reported the first evidence of the inhibitory
effects of lithium on the NMDA receptors (Nonaka, et al.,
1998). They showed that pretreatment with different doses of
lithium (0.1–5 mM) for various periods (0–7 days) robustly pre-
vented the glutamate-induced, NMDA-mediated, excitation in
cultured rat cerebellar granule, cerebral cortical and hippo-
campal neurons. In subsequent studies, it was found that this
protection could be due to the inhibitory effect of lithium on
the NMDA-mediated calcium influx into the rat cerebral
cortical neurons through attenuation of constitutive tyrosine
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phosphorylation of the NR2B subunit of the NMDA receptor
and Src tyrosine kinase (Hashimoto, et al., 2002; Nonaka and
Chuang, 1998; Nonaka, et al., 1998). Moreover, other investi-
gators reported that this effect of lithium can be explained by
its reduction of the NR2A tyrosine phosphorylation and its
interaction with PyK2 and PSD-95, as well as the interactions
of the NR2A subunit with Src and Fyn mediated by PSD-95 in
the rat hippocampus (Ma and Zhang, 2003; Ma, et al., 2004).
Recently, it was also shown that 6-week lithium treatment
attenuated the NMDA-induced signalling in the prefrontal,
frontal, motor, pyriform, anterior cingulate, somatosensory
and visual cortex, preoptic area, superchiasmatic nucleus, glo-
bus pallidus, hippocampus, caudate-putamen, habenular
nucleus, lateral geniculate, nucleus dorsal, geniculate medial,
areas of the thalamus and hypothalamus, substantia nigra
and inferior colliculus (Basselin, et al., 2006). These results are
consistent with the evidence of disturbed markers of NMDA
functioning in either the depressed (Clinton and Meador-
Woodruff, 2004; Law and Deakin, 2001; Nowak, et al., 1995)
or the bipolar brain disorder (Mundo, et al., 2003; Scarr, et al.,
2003; Toro and Deakin, 2005; Woo, et al., 2004). According to
these studies and our present data, it could be suggested that
NMDA receptor signalling is involved in the antidepressant-
like effect of lithium in the FST. However, it is noteworthy
that in the current study we examined the effect of acute
administration of lithium in combination with NMDA antago-
nists. Therefore, more detailed studies are clearly needed to
verify the underlying mechanisms in the possible interaction
of lithium with NMDA receptor signalling at this level.

Although our data could certainly be amenable to a phar-
macodynamic interpretation, it would be reasonable if one sup-
poses that lithium might alter the pharmacokinetic profile of
the NMDA antagonist compounds, and they may interact to
alter metabolism or brain bioavailability resulting in higher
brain levels and thus increased immobility. However, until
now no study has evaluated the pharmacokinetic interaction
between lithium and NMDA antagonists and this general
assumption has to await more detailed studies.

In summary, in the current study, we showed that both lith-
ium and NMDA antagonists (MK-801, ifenprodil and keta-
mine) exerted antidepressant-like effects in the Porsolt mouse
FST. We also showed that low and per se noneffective doses
of lithium in combination with low doses of each of the
NMDA antagonists significantly decreased the immobility
time of mice in the test. Moreover, our data showed that the
noneffective dose of the NMDA agonist NMDA attenuated
the antidepressant-like effect of a potent dose of lithium in
the FST. This indicates the possible interaction between lith-
ium and NMDA receptor signalling in their antidepressant-
like effect in the FST and provides a new therapeutic approach
for treatment of depression in future studies.
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