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ABSTRACT

Iraq frequently used toxic inhalants during the war with Iran, exposing over 100,000 people to chemical reagents.
Bronchiolitis obliterans (BO) is a major pulmonary disease caused by exposure to harmful gases. Recently defect
in clearance of apoptotic cells (efferocytosis) has been suggested as a mechanism that leads to several lung
diseases. Transforming growth factor (TGF)-β, a cytokine produced by efferocytotic macrophages, suppresses
the inflammation and enhances the regeneration of tissue. In this study, the authors compared the expression
of these 3 isoforms of TGF-β at mRNA level in lung biopsies of Iranian victims of chemical gases with lung
biopsies of control healthy volunteers. Semiquantitative reverse transcriptase–polymerase chain reaction (RT-
PCR) technique was used to examine the expression level of TGF-β isoforms using glutaldehyde 3-phosphate
dehydrogenase (GAPDH) gene as an internal control. The results indicated that that levels of TGF- β1 and TGF-
β3 mRNAs were significantly higher in chemical gas–injured patients than noninjured group (P < .05). Therefore,
the authors speculate that TGF-β1 and TGFβ3, but not TGF-β2, secretion is a result of efficient efferocytosis in
chemically injured patients, playing a protective role by improving airway remodeling and lung homeostasis in
this group. These properties of TGF-β are consistent with long-time survival of chemical-injured people suffering
from BO.
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There are approximately 30,000 survivors that
were exposed to toxic inhalants during the Iran-Iraq
war (1981–1989). These survivors suffer from late ef-25

fect of this warfare, including ophthalmic, cutaneous,
and respiratory sequels [1]. Among these disorders,
the latter is the most lethal illness [2]. Recent sur-
veys have indicated that bronchiolitis obliterans (BO)
is themain late respiratory complaint of these patients30

[3–5], but the BO observed in these patients is some-
how different from BO resulted from other causes.
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For example, unlike post–lung transplant BO, there
is no progressive pattern and the severity of fibrosis is
completely different and rare [6]. 35

Transforming growth factor beta (TGF-β) is a
multifunctional cytokine that controls different sets of
processes, including tissue remodeling and repair, cell
apoptosis and survival, extracellular matrix produc-
tion, and inflammation [7]. Three structurally sim- 40

ilar isoforms of TGF-β (TGF-β1, -β2, and -β3),
encoded by 3 distinct genes, have been identified
in mammalian species [8]. These 3 isoforms signal
through the same cell surface receptors and have simi-
lar cellular targets, although each isoform is expressed 45

in a distinct pattern under control of a unique pro-
moter [9]. TGF-β1 is the prevalent isoform and is
found almost ubiquitously, whereas the other iso-
forms are expressed in a more limited spectrum of
cells and tissues. Although the 3 isoforms have sim- 50

ilar in vitro properties, their in vivo effects are dis-
tinct. Knockout experiments in mice have suggested

1



2 A. A. Zarin et al.

that each TGF-β isoform plays an independent role
in embryonic development, underlining their nonre-
dundant functions [10, 11].55

TGF-β is produced by lung epithelium, fibrob-
lasts, and smooth muscle cells, and contributes to air-
way remodeling in chronic lung diseases [12, 13]. It is
also produced or released by infiltrating cells such as
lymphocytes, monocytes/macrophages, eosinophils,60

and platelets during tissue fibrosis [14–16]. Efferocy-
tosis, the engulfment of apoptotic cells by phagocytes
followed by cell replacement to maintain homeosta-
sis, seems to be necessary for normal function of lung
[17, 18], and several lung diseases, including asthma65

[18], chronic obstructive pulmonary disease (COPD)
[19–21], emphysema [19], cystic fibrosis (CF), and
non-CF bronchiectasis [21] result from impaired ef-
ferocytosis. It has been suggested that by efficient
efferocytosis, TGF-β is secreted from efferocytotic70

macrophages, and acts as an anti-inflammatory and
progrowth mediator; however. in disease states such
as CF and COPD in which efferocytosis is impaired,
the level of TGF-β is decreased [17, 18].

In view of TGF-β properties, we assumed that75

TGF-β might be responsible for airway remodel-
ing, homeostasis, and slow progression of respiratory
disease in chemical-injured patients. Using enzyme-
linked immunosorbent assay (ELISA) technique, our
team previously showed that the amount of TGF-β180

protein was higher in bronchoalveolar lavage (BAL)
aspirates of Iranian war veterans exposed to chemical
gases [2], in comparison with the control group; how-
ever, the expression of the other 2 isoforms, TGF-
β2 and TGF-β3, has not been examined yet. In the85

present study, in order to clarify the significance of
each TGF-β isoform in lung disease of people poi-
soned by toxic inhalant, we examined the mRNA ex-
pression for TGF-β1, TGF-β2, and TGF-β3 genes
in lung biopsies of chemical-injured patients by semi-90

quantitative reverse transcriptase–polymerase chain
reaction (RT-PCR), and compared it with noninjured
patients.

MATERIALS AND METHODS

Subjects95

Fourteen healthy volunteers and 20 patients suffer-
ing from late effects of exposure to chemical gases
were included in the study. All the healthy subjects
were free from respiratory diseases, with normal chest
x-ray films, high-resolution computed tomography100

(HRCT) scan, pulmonary function tests (PFTs), and
bronchoscopy. In addition, these patients displayed
no respiratory symptoms for at least 3 months be-

fore this study. The range of healthy people age (1
female and 13 male) was 43 to 64 years. The case 105

group were patients who had been exposed to chemi-
cal gases 15 to 16 years ago during the Iran-Iraq war,
and they had clinical signs such as blisters or ocu-
lar injuries according to their patient charts. Further-
more, they had shown symptoms of BO confirmed by 110

high-resolution computed tomography (HRCT) scan
and biopsy samples taken by bronchoscopy in previ-
ous studies [3–5]. All patients were male with the age
range of 38 to 56 years. Patients with other chronic
lung diseases, autoimmune diseases, chronic infec- 115

tious diseases, cancers, or acquired autoimmunodefi-
ciency syndrome, as well as smokers, addicts, and pa-
tients treated with corticosteroids were excluded from
the study.

Fiber optic bronchoscopy 120

All subjects of the trial were appropriately informed
of their situation and the reasons for the recommen-
dations for bronchoscopy were explained, and writ-
ten consent was obtained from all subjects. The up-
per respiratory tract was anesthetized with 2% lido- 125

caine. Atropine (0.75 mg intramuscularly) was ad-
ministered before the procedure. Supplemental oxy-
gen was given throughout the procedure, and the oxy-
gen saturation was monitored by continuous pulse
oxymeter. Via a flexible fiber optic bronchoscope 130

(Olympus BF1T, Tokyo, Japan), fiber optic bron-
choscopy was performed to obtain right upper lobe
lung biopsy specimens, using small pinchers attached
to a long cable threaded through the bronchoscope by
a specialist. The biopsies were snap-frozen in liquid 135

nitrogen and stored at −80◦C until RNA extraction.

RT-PCR

Total RNA was isolated from frozen specimens us-
ing the high pure RNA tissue kit (Roche, Germany),
according to the manufacturer’s instructions. Briefly, 140

lung biopsies were homogenized, lysis buffer was
added, and centrifuged; total RNA was precipitated
by absolute ethanol, incubated with DNase, and
centrifuged; finally total RNA was washed by wash
buffer, and was eluted by distilled water. The purified 145

RNA was used for first-strand cDNA synthesis, using
first-strand cDNA synthesis kit (Cinnagene Iran) by
oligo (dT)18 primer (MWG,Germany) in a 20-μL re-
action according to the manufacturer’s instructions.
The amplification of the genes of interest was per- 150

formed in 25-μL reaction mixture containing 10 mM
Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2,
0.5 μL of first-strand cDNA, 0.5 U of recombinant
Taq DNA polymerase (Cinagene), 200 μM of each

Experimental Lung Research



TGF-β1 and TGF-β3 genes in toxic-inhaled patients 3

TABLE 1 The Sequences and Other Features of the Primers Employed in This Study

Gene and GeneBank ID Primer Primer sequence (5′ to 3′)
Annealing

Tm (◦C)

PCR product

length

TGF-β1 (NM-000660) Forward ACCCACAACGAAATCTATGACAAG 60 624

Reverse GAGGCAGAAGTTGGCATGGTAG 60

TGF-β2 (NM-003238) Forward AGAAGACTATCCTGAGCCCGAG 59 448

Reverse TACATCGAAGGAGAGCCATTCGCC 59

TGF-β3 (NM-003239) Forward CATAAATTCGACATGATCCAGGGG 59 645

Reverse GCCATGGTCATCCTCATTGTCCAC 59

GAPDH (NM-002046) Forward CCAGCCGAGCCACATCGCTC 56 359

Reverse ATGAGCCCCAGCCTTCTCCAT 56

deoxynucleoside triphosphate, and 4 μM of each155

primer (Table 1). PCR was performed under similar
conditions for selected genes and the internal control.
The initial denaturation was performed at 94◦C for 1
minute and amplification was performed by 30 and
35 cycles of denaturation at 94◦C for 40 seconds, an-160

nealing at 56◦C to 60◦C for 30 seconds, and extension
at 72◦C for 60 seconds followed by a 5-minute final
extension. PCR products were subjected to agarose
gel electrophoresis. The expression level of gene was
quantified according to the band intensity on agarose165

gel stained with ethidium bromide was measured us-
ing UVItec software. The identity of PCR products
were confirmed by restriction enzyme digestion and
also by sequencing (data not shown).

Statistics170

Data were shown as mean± standard deviation (SD).
SPSS 15.0 (SPSS, Chicago, IL, USA) was used
for statistical analysis. All experiments were repeated
twice and the results were analyzed by performing t
tests. P < .05 was considered as statistically signifi-175

cant.

RESULTS

In total, 20 lung specimens from SM-injured pa-Q1

tients and 14 samples from healthy control people
were collected. Patient’s demographic characteristics180

are demonstrated in Table 2. Specific primers were
designed for amplification of fragments of different
TGF-β genes isoforms. The expected band sizes for
GAPDH, TGF-β1, -β2, and -β3 were 359, 624, 448,
and 465 bp, respectively. The 624-bp PCR product185

corresponding to amplified TGF-β1 fragment was
visualized in 11 out of 14 healthy control samples
(78.5%) and in 19 out of 20 (95%) patient samples
(Figure 1). The expression level of TGF-β1 in pa-
tients poisoned with toxic inhalants appeared to be190

higher in comparison with controls (Figure 2). Given

that the cDNA of TGF-β2 was detectable only as a
weak signal in a small number of control and patient
samples (data not shown), we ignored the expression
analysis of this isoform in our study. 195

We detected the transcript of TGF-β3 cDNA in 9
out of 14 (∼64.3%) control samples and in 14 out
of 20 (70%) patient specimens. The results showed
that as with TGF-β1, the expression level of TGF-
β3 was higher in patients exposed to toxic inhalants 200

than healthy people (Figure 2).

DISCUSSION

According to the last reports, bronchiolitis obliter-
ans (BO) is the main pulmonary disease among the
survivors of Iranian veterans and civilians poisoned 205

with toxic inhalants during the Iraq-Iran war [5]. Lit-
tle is known about the molecular mechanisms lead-
ing to structural alterations and pathological symp-
toms observed in the lungs of these people. Us-
ing ELISA technique, we previously detected higher 210

levels of TGF-β1 protein in BAL fluid of a group

TABLE 2 Demographic Characteristics of the Population

Studied

Control

(n = 14)

Inhalation

injury

(n = 20)

Age range

(year)

43 to 64 38 to 56

Sex

Male (%) 13 (93%) 20 (100%)

Female (%) 1 (7%) None

Smoking

history

None None

Weight (kg) 70.3± 12.5 (45–93) 73.5± 12.1 (52–98)

Height (cm) 167.9± 9.6 (154–181) 170.4± 8.7 (142–184)

BMI (kg/m2) 25.7± 4.9 23.8± 5.2

FVC (L) 2.85± 0.87 3.34± 0.52

FEV1 (L) 1.9± 0.78 2.87± 0.7

FEV1/FVC 67.2± 13.1 69.5± 15.1

C© 2010 Informa Healthcare USA, Inc.
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FIGURE 1 Reverse transcriptase–polymerase chain reaction analysis of the expression of TGF-β1 (624 bp), TGF-β3 (465 bp),

and GAPDH (359 bp) in the lung samples obtained from toxic-inhaled patients (P) and control people (C).

of veterans exposed to chemical gas in comparison
with nonexposed subjects [2]. In this study, expres-
sion of different types of TGF-β transcripts is ex-
amined between Iranian chemically injured patients215

and healthy volunteers. Our result is consistent with
studies done by other groups, in detection of TGF-
β1 and TGF-β3 genes expression in normal adult
human lung [15, 22, 23]. The transcripts of the-
ses 2 genes were also detected in specimens of toxic220

inhalant–injured patients. TGF-β1 gene expression
appeared to be increased in patients, which is compat-
ible with our previous data [2]. The TGF-β3 gene ex-
pression was higher in the patient group, but we could
not detect any significant gene expression for TGF-225

β2 gene in either the patient or the control group.
This could be because of weak expression of this iso-
form in airway of 2 groups, or low sensitivity of our
method.

TGF-β appears to have a role in most respiratory230

disorders [13], and it has been suggested that TGF-β
serves as an early marker of BO [24]. In rodent mod-
els, the role of TGF-β and its signaling pathway in
development of BO has also been reported [25, 26].
El-Gamel et al. showed overproduction of TGF-β235

in BO patients, but they did not distinguish the ex-

act up-regulated isoform of this factor [27]. Bergman
et al. detected slightly increased levels of TGF-β1
transcripts in bronchoalveolar lavage (BAL) cells of
lung transplant recipients affected with BO [28]; 240

however, we have found over 3-fold up-regulation
of TGF-β1 gene in our patients. Smad pathway is
the most represented signaling mechanism for TGF-
β; however, it can also activate alternative signal-
ing pathways, including extracellular signal-regulated 245

kinases (ERKs), c-Jun N-terminal kinases (JNKs),
and p38 mitogen-activated protein kinase (MAPK),
which are members of the MAPKs. These MAPK-
related pathways can mediate or enhance Smad-
dependent responses, or result in Smad-independent 250

effects [29–32]. The availability of active TGF-β1 lig-
and could be one of the factors determining which
downstream pathway is activated. Although extensive
post-transcriptional regulation makes it complicated
to predict the concentration of active TGF-β1 pro- 255

tein just by measuring the level of its transcripts, we
have previously shown higher levels of TGF-β1 pro-
tein in BAL samples of our patients, which is con-
sistent with its transcript levels in this group of peo-
ple. Therefore, different levels of increase in TGF- 260

β1 expression between our patients and patients

Experimental Lung Research
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FIGURE 2 Mean Relative intensity of TGF-β1 (A) and TGF-β3 expression (B) in

chemical-injured patients and control people. Relative band intensities for TGF-β1 and TGF-β3

for each sample were quantities by densitometry, normalized to GAPDH expression, and the

mean of expression in the different groups is shown as histograms. Statistical analysis revealed that

the expression of TGF-β1 and TGF-β3 is significantly higher in chemical-injured samples

compared with healthy ones (P < .001 for TGF-β1 and P < .01 for TGF-β3).

C© 2010 Informa Healthcare USA, Inc.
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suffering from post–lung transplantation BO raise
the possibility that TGF-β1 could have a different
function and downstream signaling pathway in each
group. However, understanding the exact role of265

TGF-β has been hampered by the complex and un-
usual biology of TGF-β activation and by the amaz-
ing diversity of its effects, eliciting multiple, and of-
ten opposing, cellular responses [33]. For example in
some experiments, TGF-β shows anti-inflammatory270

and immunosuppressive effects [9, 34], whereas it ap-
pears to be a proinflammatory factor in others [9, 35].
It has been suggested that TGF-β1 released by the
phagocyte acts in an autocrine/paracrine manner to
suppress the production of inflammatory cytokines,275

chemokines, and lipid mediators [36]. In different tis-
sues, including skin and lung, it has been observed
that TGF-β1 is involved in wound healing, fibroge-
nesis, and angiogenesis [37–39]. On the other hand,
it seems that by inducing cellular apoptosis and de-280

creasing epithelialization, it could prevent wound re-
pair [40–43]. The complexity of TGF-β effects could
be due to several reasons, including different state of
activation and differentiation of the target cells, the
presence of other stimuli in the local microenviron-285

ment, and the presence of different signaling path-
ways by which TGF-β could exert its antagonistic ef-
fects [40–44].

According to several studies, TGF-β plays a piv-
otal role in extracellular matrix homeostasis. TGF-290

β can stimulate the expression of tissue inhibitors of
matrix metalloproteinase (TIMPs) and extracellular
components, and also inhibit the expression of several
matrix metalloproteinases (MMPs). One of TGF-β
downstream proteins, connective tissue growth fac-295

tor (CTGF), mediates part of its fibrogenic function.
Excessive amount of TGF-β could result in accumu-
lation of extracellular matrix and decreased degrada-
tion of it, which could lead to fibrotic diseases of lung,
heart, and skin [14, 45–47]. Along with cell prolifer-300

ation, extracellular matrix deposition seems to have
an important role in the pathogenesis of BO (28, 48).
However, clinical investigations showed no symptoms
of fibrosis in our patients. In order to analyze the pres-
ence of fibrosis at the molecular level, and to see if305

TGF-β is involved in extracellualr accumulation, we
evaluated the expression of TIMP1 and CTGF genes
in our patient and control groups. We did not see
any difference in expression TIMP1 between the 2
groups, and surprisingly we found a slight decrease in310

CTGF expression in BO patient group (unpublished
data). These data suggest that TGF-β is not involved
in fibrogenic processes in our patients; however, fur-
ther expression analysis of other TGF-β downstream
genes that are involved in extracelluar matrix home-315

ostasis is suggested to confirm these data. So far, both

molecular and clinical studies have indicated the ab-
sence of fibrosis in these patients.

Suppression of inflammatory response and im-
provement of tissue regeneration have recently 320

emerged as protective functions of TGF-β1 [17, 18],
which could lead to long-term survival of patients suf-
fering from different lung diseases. Apoptosis is im-
portant for the regulation of normal cell turnover in
the lung and is a key mechanism in the control of 325

the repair process [49]. Under normal conditions,
apoptosis is followed by efferocytosis, which is a rapid
and specialized phagocytosis of apoptotic cells by
macrophages/monocytes with minimal inflammatory
response [50–52]. However, increased rates of apop- 330

tosis of lung cells may result in unbalanced homeosta-
sis, leading to an overloading of the local capacity for
phagocytosis and defective clearance [49, 53]. Stud-
ies have shown that macrophage ingestion of apop-
totic cells causes an increased release of TGF-β from 335

these cells [54, 55] that results in suppression of in-
flammatory and immunogenic response, proliferation
of epithelial and endothelial cells, and the mainte-
nance of normal lung structure [52, 56, 57]. These
observations are compatible with CF and COPD dis- 340

eases in which the TGF-β protein level is lower than
normal, which could result from ineffective clear-
ance of apoptotic cells, therefore, insufficient levels
of TGF-β could lead to sustained inflammation and
impaired tissue repair [17, 18]. 345

In spite of the fact that the main pathologic diag-
nosis in our patients is BO, the declining speed of
pulmonary function (PF) is slower than rate seen in
BO patients due to other causes [6]. This could be
explained by efficient efferocytosis, which is followed 350

by secretion of TGF-β1 and TGF-β3 in the lungs of
these patients, leading to suppression of inflamma-
tion, less perspective removal of apoptotic cells, and
robust maintenance of the balance between cell death
and replacement. 355

CONCLUSION

Considering the data of this study and others
we speculate that TGF-β1 and TGF-β3 are anti-
inflammatory cytokines, which are secreted by
macrophages involved in effercytosis, and are respon- 360

sible for bland removal of apoptotic cells, and proper
lung tissue repair. This is manifested by the slow pro-
gression of respiratory disorder, BO, and absence of
fibrosis in these people. Herein, we considered only
the expression of TGF-β. Further studies consisting 365

of immunohistochemistery (IHC) are suggested to
investigate other profibrotic or antiapoptotic genes to
improve the hypothesis.
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