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A B S T R A C T

Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells.
Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in
gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1
based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of
tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The
third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only
advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened
transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches.
Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and
life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of
their utilization in immunotherapy and gene therapy.

1. Introduction

Viruses are an intriguing conveyor to transfer genes into various
host cells. Among them, retroviruses have gained more attention due to
the ability to integrate their genome into the target cell genome [1].
Retroviruses have been utilized as a vehicle for gene delivery since
1996 by Naldini et al. [2,3]. Although there are different types of LVs,
including HIV-2, Murine Leukemia Virus (MLV), feline im-
munodeficiency virus (FIV), equine infectious anemia virus (EIAV), and
bovine immunodeficiency virus (BIV), the HIV-1 based LV has earned
more heed than others as an efficient vector [4–9]. HIV-1 based LVs
have been the vectors of choice due to the HIV’s capability to integrate
specific genes into dividing and non-dividing cells irreversibly, in order
to express the gene of interest permanently [10,11]. Mainly, four gen-
erations of HIV-1 based LVs have been developed until now [12,13].
Producing and transducing clinical-grade LV into target cells often faces
limitations because clinical strategies require safe, efficient, and suffi-
cient LVs. To address those challenges, different production and
transduction enhancers, including some specific reagents, adjuvants,
and mechanical-based systems such as microfluidic devices, have been
applied [14]. Gene delivery approaches can be improved potentially

due to the controlled environment provided by microfluidics systems
[15]. Recently, lots of progress have been made in the microfluidics
field toward both viral and non-viral gene delivery [14,16]. The unique
features of these striking LV have entered them into the field of gene
therapy and immunotherapy [12,17]. Large amounts of investment
have been drawn to the subject of gene medicine in order to overcome
the most challenging diseases [12]. Nowadays, LV serves as a phe-
nomenal tool in both immunotherapy and gene therapy by transducing
chimeric antigen receptor (CAR) into leukocytes, delivering gene-
editing tools like CRISPR/CAS9 into target cells, or integrating a
healthy gene in order to rectify a disease [18]. It is worthy of men-
tioning to say that gene delivery and gene therapy have some limita-
tions in both in vivo and in vitro, including innate and adaptive im-
mune responses, anatomical obstacles, transgene activation, size of the
vector, production of large-scale clinical-grade vectors, disruption of
host genes, costs of materials and equipment, limited strategies toward
optimizing gene delivery [19–23]. In this concise review, we demon-
strated some optimized methods that have taken place in the matter of
LV production and transduction, along with describing their role in
clinical approaches.
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2. Lentivirus

Lentivirus is a single-stranded RNA (ssRNA) virus belongs to the
family of Retroviridae (retroviruses), which contains two copies of
positive-strand RNA encompassed by capsid and envelope with a dia-
meter between 80–120 nm [24]. All retroviruses encode three equiva-
lent genes, including gag, pol, and env, which are flanked by long
terminal repeats (LTRs). Both ends of the viral genome have LTRs with
600–900 nucleotides needed for virus replication, integration, and ex-
pression. Unlike simple retroviruses (y-retroviruses), complex retro-
viruses (lentiviruses) possess vif, vpr, vpu, and nef as accessory genes and
tat and rev as regulatory genes that can encode proteins contributing to
infection, binding, and releasing [25–27].

2.1. The virus and its structure

The provirus (the viral cDNA that integrates to host genome) has a
length, about 9–10 kilobases. The proviral LTRs are located in both
ends of the lentivirus genome, and each is divided into three regions,
including U3, R, and U5, in which correspondence to transcription in-
itiation is related to the first nucleotide of the R region. The interaction
of cellular factors with the U3 region that contains elements of basal,
enhancer, and modulatory is requisite for transcriptional activity, al-
though additional regions in both R and U5 are required. The R region
comprises particular sequences able to form stable stem-loops, which
are pivotal in the Tat-mediated transactivation. Eventually, LTRs also
possess sequences needed for RNA capping and polyadenylation in the
R region [28,29].

Lentiviruses hold three primary genes, namely gag, pol, and env,
which are responsible for encoding the viral core, reverse transcriptase
(RT), integrase (IN) and protease, and viral envelope proteins, respec-
tively [30]. Also, there are regulatory and accessory genes, including
vif, vpr, vpu, tat, rev, and nef.

After the virus integration into the host genome, transcription
complexes owned by the host assemble at the promotor site located in
the 5′ LTR and produce short incomplete viral transcripts. In order to
generate full-length viral mRNAs, a viral transcription factor called Tat
recruits the host's RNA polymerase II (RNAP II) and increases its ac-
tivity. The host's cyclin T1 (CCNT1) is a requisite cofactor for Tat
[31–33]. Additionally, Tat manipulates the expression of cellular genes
to promote viral replication [34]. Viral transcripts need to be trans-
ferred to the cytoplasm. In this manner, the Rev possess shuttling
properties involved in the translocation of lentiviral transcripts from
the nucleus to the cytoplasm [35].

The Nef protein has been credited with some functions, including
downregulating BST2/Tetherin, MHC-I, CD4, and other cell surface
receptors [33]. Nef is able to bind with endosomal sorting complexes
required for transport machinery (ESCRT), and AP-1 and AP-2 clathrin
adaptor complexes involved in coated vesicle budding [36].

The Vif protein has an antagonizing role against the host antiviral
agent, APOBEC3 (A3), which results in the degradation of A3 [37]. The
secondary function of Vif is the ability to bind with the CBF-β tran-
scription factor, which further leads to a lower expression of A3
[38,39].

The Vpr has several functions, including nuclear import of the pre-
integration complex (PIC), cell cycle arrest at G2 phase, LTR transac-
tivation, cellular apoptosis, and activation of the DNA damage response
[40,41]. Mostly, the presence of these phenotypes relies on the inter-
action of Vpr with CRL4DCAF1 ubiquitin ligase complex [42–44].

The protein that Facilitates the viral release is Vpu, which con-
tributes to the inhibition of BST-2/Tetherin. The Vpu also induce im-
munosuppression by downregulation of the NF-κB pathway through
inhibiting BST-2/Tetherin [45–47] (Fig. 1).

2.2. The virus life-cycle

The lentivirus life cycle consists of two steps, the early and late
phases. Entry to the cell is the first step in the initial stage; simple
retroviruses gain entry to the cell via endocytosis mechanism following
interaction of cognate cell receptors with the viral glycoproteins within
the envelope. So too, complex retroviruses use direct fusion or receptor-
mediated endocytosis [48]. After virus attachment to the cell receptor
for example binding of CD4 on T lymphocyte (T-cell) to gp120 on the
surface of HIV's envelope, multiple conformational changes happen to
viral envelope glycoproteins which give access the virus gp120 to bind
with other co-receptors such as CCR5 (or CXCR4) chemokine receptor.
These conformational changes result in proceeding the membrane fu-
sion of the virus [49,50].

Following initial fusion, the viral capsid transports by microtubule
system in a process called intracellular trafficking. During the entry of
the capsid, reverse transcription of viral RNA by RT occurs in the cy-
toplasm through a complicated multistep process to synthesis the viral
double-stranded DNA, which is accompanied by capsid disassembling
[48,51]. The RT has enzymatic features, including RNA-dependent DNA
polymerase, DNA-dependent DNA polymerase, and RNase H [52].

Accordingly, the capsid converts to the PIC that contains provirus
DNA, Vpr, integrase, and matrix p17 (MA) [52,53]. The nuclear en-
trance of PIC is facilitated by the interaction of specific sequences on
both integrase and MA with importin α and β [54,55]. Herein, the Vpr
protein expedites nuclear transportation by increases the affinity of
importin α to sequences on both IN and MA. Also, it has been de-
monstrated that Vpr interaction with human Nup153 can facilitate
nuclear translocation of the lentivirus genome [28,56]. Opposite to
simple retroviruses, complex retroviruses are able to pass through nu-
clear pores. Given that, this potent them to infect not only dividing but
also quiescent cells in the G0 phase [57,58].

The provirus integration to the host DNA is mediated by PIC, which
is a precursor for chromosomal integration. This process takes place by
chance with respect to the preserved sequence located at the end of
LTR. Even some endogenous transcription factors belong to host cells,
such as LEDGF involves in the integration process [59,60]. As the in-
tegration completed, RNAP II recruited by Tat starts to use the U3
element located at 5′ as the promoter for transcription [61]. Through
alternative splicing, retrovirus extends the protein-coding potential,
encoding two open reading frames (ORFs) from a solitary promoter
without neglecting the “one mRNA, one gene” rule. This ability allows
the retroviruses to have a fixed ratio of viral proteins (high gag to pol
ratio) [48,62]. After transcription and translation, capsid assembly in
the cytoplasm initiates by Gag binding to the genomic RNA. All in all,
the viral progeny uses a process termed budding to be released into the
extracellular space [48,63].

2.3. Generations of HIV-1 based lentiviral vector

Stripping down the HIV-1 genome to its bare bones provides a po-
tential primary LV; nonetheless, a significant breakthrough achieved by
Naldini et al. was segregation of the viral vector sequences into distinct
plasmids, which invented a safe and reliable LV [64,65]. The first-
generation contained all of the HIV-1 genome except env; instead, an-
other viral envelope was replaced. The G glycoprotein of the vesicular
stomatitis virus (VSVG) on a separate plasmid included in the design of
first-generation to encode a more effective envelope [64]. Pseudotyping
LVs with VSVG protein provided a broader breadth of tissue tropism
[66]. The VSVG envelope has been proven to have higher stability,
resulting in lengthy storage periods and effective concentration rates by
ultracentrifuge. The gene expression rate was intensified by using the
human cytomegalovirus (CMV) promoter in the 5′ LTR [67].

The vif, vpr, vpu, and nef genes have shown to augment the virulence
effect of viral vector in the first generation. For example, Vpu, Vpr, Vif,
and Nef are potentially able to induce immunosuppression, cell cycle
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arrest, cell growth inhibition, and provoking apoptosis, respectively
[68–71]. The second generation of LVs became safer by eliminating
these four viral accessory genes; however, the LV gene transferability
rate remained considerably efficient [72].

Unlike the second-generation construction that tat, rev, gag, and pol
genes were placed along together, in the third-generation system, tat
was deleted from packaging construct due to its role in intensifying HIV
replication and exceedingly increasing the transcriptional activity [73].
Besides, Tat has been considered as a potential key factor in developing
Kaposi’s sarcoma and inducing adverse cell responses [73,74]. By de-
leting tat from the packaging construct, an active promotor sequence
such as CMV promoter was added into a construct containing the
transgene, which could be considered as a further enhancement in the
system [72,73]. The third-generation of LV can be produced by three-
or four-plasmid systems, which former codes for gag-pol, env and gene
of interest, and later codes for gag-pol, env, rev, and gene of interest.
These plasmids can be transfected into the human embryonic kidney
293 (HEK293) cell line, which is being utilized widely to produce LVs
[75]. Recently, a novel and more stable lentiviral packaging cell line
termed LentiPro26-A59 was developed that can provide viral titer
above 106 TU. mL−1. day−1, which shows more adaptability for large-
scale viral production [76]. However, still, over time, the viral pro-
ductivity becomes less that could be due to the epigenetic alterations in
the CMV promoter [76,77]. In addition to separating viral particles into
distinct plasmids, self-inactivating (SIN) LVs were developed to achieve
safer transduction and less likely recombinant virus generation [78].

Compared to other generations of LVs that contain 19.6 % similarity
to the genome of wild type HIV-1, the fourth generation of the LV
termed LTR1 has been designed by incorporating quintessential RNA
signal sequences to reduce the similarity of the LV to 4.8 % [79]. Since
these signal sequences are placed outside of the viral backbone, they
would be subsequently lost throughout the reverse transcription pro-
cess, which hampers them to be copied into the transduced transgene.
Given that, the LTR1 lentiviral vector might be a safer armamentarium
toward gene therapy [13].

2.4. Optimizing vector production

In brief, adherent cell lines such as HEK293 T or HEK293 are gen-
erally considered as a proper packaging cell line for plasmids (trans-
gene, gag-pol, rev, and env) containing codes for vector packaging
construct. The expression of SV40 T-antigen on the HEK293 T is the

main difference between these cell lines. This antigen showed to lead to
yield higher titers [80]. After HEK293 T reached 70 % confluency, the
plasmids would be transfected transiently into HEK293 T cells with
transfection reagents such as polyethylenimine (PEI) or Calcium Phos-
phate (CaPO4). Transfection mixture should be removed from culture
media after several hours by replacing the media with a fresh one.
Then, 48–72 hours post-transfection, the virus should be harvested.
Then, an ultracentrifuge can provide adequate amounts of vector for
small-scale or research purposes [81]. In order to capture large-scale of
the vector from the supernatant, anion exchange chromatography and
tangential flow filtration (TFF) might be a proper call. The typically
achieved titer fluctuates between 1×108–1×109 viral particles per
mL. However, Tinch et al. introduced a method using Mustang Q
chromatography, TFF and diafiltration that might yield even higher
titer [82]. Other mentioned methods for LV production are electro-
poration and nucleofection [83,84].

The HEK293 T is a serum-dependent cell line, so producing the
current Good Manufacturing Practices (cGMP)-grade LVs through this
cell line consist of some limitations due to the consumption of animal-
derived serum for growth and maintenance, which is costly and also
prone the culture media to a higher risk of contamination by un-
premeditated viruses. Furthermore, the need to use multi-stack plastic
tissue culture vessels demands more production time and requires fur-
ther costs [85]. To address these limitations, Bauler et al. developed an
enhanced adapting HEK293 T-derived cell line, called SJ293 TS, with
the ability to grow in suspension using serum-free media (SFM). Com-
pared to the adherent serum-dependent HEK293 T cell line, the
SJ293 TS cell line showed the equivalent value of the LV generation in
SFM. Importantly, an efficient transduction rate was achieved, fol-
lowing to transduction of SJ293 TS-derived LVs into human T cells and
CD34+ cells. Although other HEK293-derived cells have been devel-
oped to grow and produce LVs in suspension with SFM, the SJ293 TS
demonstrated at least 10-fold higher LV titers [85–89].

Suzuki et al. showed that intensifying promotor activity in
HEK293 T would results in a significant enhancement in the production
of LVs. They found out that LV production will be enhanced by co-
expression of SPRY domain-containing SOCS box protein 1 (SPSB1),
along with higher gag and env (VSVG) expression and increased acti-
vation of the promoter (CMV promotor) [90]. Subsequently, they have
figured that Tax protein from human T-lymphotropic virus type 1
(HTLV-1) can activate essential transcription factors, including AP-1,
NF-κB, and CREB/ATF, which binds to their recognition sites on the

Fig. 1. Schematic representation of HIV-1 structure and the corresponding genes. HIV-1 genome is flanked by 5′LTR and 3′LTR. GAG, POL, and ENV genes encode
structural proteins. GAG gene encodes 6 proteins (p17, p24, p7, p6, p2 and p1), POL gene encodes 3 essential proteins (reverse transcriptase (RT), protease (PR), and
integrase (IN)), ENV gene encodes 2 proteins (gp120 and gp41). TAT and REV are 2 regulatory genes. VIF, VPU, VPR, and NEF are 4 accessory genes [27].
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CMV promotor. All that eventually leads to higher production of LVs
[90–94].

The harvested LVs could play different roles in research experiments
or therapeutic strategies through transducing cells with either a pro-
tein-coding gene or an RNA interference (RNAi) gene such as short
hairpin RNA (shRNA) [95–97].

2.5. Optimizing vector transduction

LVs can be pseudotyped to transduce a vast spectrum of tissue
tropism, including lymphocytes, myocytes, hematopoietic cells, fibro-
blasts, neural cells, hepatocytes, lung epithelial cells, pancreatic islet
cells, muscle cells, and retinal pigment epithelium. However, the VSVG
pseudotyped LVs fulfilled this purpose [98–101]. Note that, the VSVG
protein recognizes a ubiquitously expressed receptor called low-density
lipoprotein (LDL) receptor, enabling the vector to transduce a vast
range of cells [102].

Some studies explicated that prior to binding of enveloped viral
vectors with their established receptor on target cells, there are other
binding events independent of those specific interactions [103,104].
Fundamentally, enveloped viral vector interaction with the target cell
might not be straightforward due to the electrostatic repulsion forces
between negatively-charged cells and the viral vector [105,106]. In this
regard, poly-L-lysine, diethylaminoethyl (DEAE)-dextran, polybrene,
protamine sulfate, or cationic liposomes are applied as positively-
charged polycationic agents to diminish those repulsion forces
[105,107–114]. Though utilizing polybrene in viral transduction in-
dicates adverse effects on the proliferation and senescence of stem cells,
especially mesenchymal stem cells (MSC), inhibiting the activity of p38
mitogen-activated protein kinases (MAPK) revealed to be effective in
attenuating those adverse effects of polybrene. Intriguingly, the p38
MAPK inhibition elucidated no weakening in transduction efficiency
[115]. Albeit, data suggest that DEAE-dextran has a preferable aptitude
over other aforementioned polycations in heightening LV transduction
rate [114]. The amphiphilic poloxamer synperonic F108, also called
lentiBOOST, is a non-ionic substance that diminishes the microviscosity
of the cell membrane, escalates lipid exchange, and amplifies trans-
membrane transport [116]. In several studies, lentiBOOST provided
high transduction efficiency to hematopoietic stem cells (HSCs), he-
matopoietic stem and progenitor cells (HSPC), and T cells, and also
have not shown any specific toxicity or alteration in cell viability and
phenotype [116–121].

Other enhancers, including Vectofusin-1, FuGENE 6, PEI,
Lipofectamine 2000 and 3000, demonstrated the capability to improve
transfection and subsequently viral transduction efficiency [122–125].
Also, results provided by some studies showed that adjuvants such as
staurosporine, poloxamer 407, and prostaglandin E2 (PGE2) are potent
to increase LV transduction in human CD34+ cells either alone or in
combination together [126–128].

Intrinsically, LV with a VSVG envelope would be recognized as an
invader to cells. Since all cells possess innate intracellular immune
barriers, they would hinder the transduction process [129,130]. Mea-
sures like attenuating intracellular responses by using im-
munosuppressors can be taken into account to increase the transduction
rate. Several studies showed that immunomodulatory compounds such
as Cyclosporine A and H, BX795, and corticosteroids like Dex-
amethasone (DEX) would result in a heightened viral vectors trans-
duction rate [130–136]. Furthermore, using Cyclosporine H (IFITM3
inhibitor) in comparison to Cyclosporine A, resulted in a remarkably
higher LV transduction rate in HSPCs derived from the human cord
blood [135].

Retronectin (recombinant human fibronectin fragment) has a great
potential in juxtaposing the target cell and lentivirus. It possesses C-,
CS1-, and H-domains, which C- and CS1-domains can bind to the target
cell via cell integrins (VLA4 and VLA5), and H-domain absorbs lenti-
viruses [137]. Many studies stated, either adding LVs prior to

introducing target cells or adding a mixture of LVs and cells to a Ret-
ronectin-precoated well plate could boost transduction efficiency, but
in comparison to other novel methods using Retronectin requires a
relatively high multiplicity of infection (MOI) to reach the desired
transduction efficiency [14,137–143]. Although Retronectin is GMP
grade transduction enhancer, the high MOI needed for Retronectin-
mediated transduction and specific coating protocols might be count as
limitations in clinical strategies [139]. According to that, a targeted and
specific single-chain variable fragment (scFv) was fused to VSVG, and
low MOI required for safe and efficient transduction was achieved
[144]. However, the cells that are hard to transduce, such as human
CD30+ lymphoma cells and EGFR+ tumor cells, could be efficiently
transduced by fusing scFv antibody to VSVG along with using spino-
culation, lentiBOOST [139,144].

Extracellular vesicles (EVs) can carry various types of RNAs, and it
has been implied that EVs are biocompatible transporters for gene de-
livery [145]. Somewhat, the biological pathway of producing LVs from
adherent cells is parallel to the biogenesis of these putative EVs
[146–148]. A transmembrane protein called CD9 is required for EV
biogenesis; besides, CD9 has different roles in cell adhesion, cell-cell
fusion, and somehow CD9 might be linked with HIV-1 infection
[149–151]. Based on that, O. Böker et al. found out that if they amplify
CD9 expression in the LV producer cells, in the absence of VSVG protein
on LVs, which is required for binding to LDL receptor of cells, the
produced EV-based LVs containing viral proteins, transgene and the
CD9 on their surface could minorly transduce the cells, without need to
interact with any specific receptor. Afterward, they produced VSVG-LVs
containing high amounts of CD9 on the vector's surface, and transduced
five distinct cell lines, including B cells (Raji), T cells (Jurkat), HeLa,
HEK293, and SH-SY5Y neuroblastoma. All in all, Utilizing CD9-VSVG-
LVs resulted in achieving faster and enhanced transduction efficiency
[152] (Fig. 2).

3. Microfluidic approach toward LV transduction

New and efficient approaches toward the improvement of gene
delivery and therapy are always required to overcome different ob-
stacles in these areas. The microfluidic approach in the field of gene
delivery and therapy promises a remarkable breakthrough by providing
a micro-environment to obtain better control and precise optimization
over both transfection and transduction processes [15]. Using LVs as a
gene delivery tool through microfluidic devices would benefit in dif-
ferent directions, including less LVs usage for transduction, and faster
transduction rate. Thus, it can prevail over some limitations and extra
costs [153]. Not only the microfluidic system would allow enhancing
transduction, but it also provides an additional feature like micro-
fluidic-based electroporation to manipulate a cell leading to improved
transfection efficiency and higher cell viability [154–156]. For instance,
a study used microfluidic-based electroporation to transfect 100 million
human T cells with CAR RNA, and process only took thirty minutes,
afterward the cells reached to their full efficiency in 24 h [157]. It
worth mentioning that cells naturally operate in a micro-scaled en-
vironment, so according to that, A study by Houshmand et al. showed
that to some degrees, culturing the living hematopoietic bone marrow
in microfluidic systems is able to simulate and mimic a bone marrow
environment like (BM) in a 2D and 3D in vitro conditions [158]. All of
which indicate great potentials of microfluidic systems.

By allocating an ideal environment at 37 °C for LVs, their half-life
could be considered to be in a mean range of 600 μm through Brownian
motion from their initial point to their endpoint [159,160]. Conven-
tional transduction procedures and even real-time transduction with co-
culturing LV producer cells with target cells take place in standard cell
culture vessels [154]. However, traveling in these standard cell culture
vessels requires millimeters or centimeters of distances. It brings up that
most LV particles degrade before reaching their target. Microfluidic
devices overcome that obstacle by miniaturizing the environment to
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provide a micro-scale system, which allows having less viral particles
wasted. In addition, microfluidic systems possess advantages by con-
suming a fewer amount of reagents, reduced transduction time, and low
LV concentrations (∼one-twentieth) usage over other aforementioned
methods used as an enhancer of transduction [14,161,162]. Micro-
fluidic approaches toward ex vivo gene therapy to producing effective
factor VIII for hemophilia A as a challenging disorder showed to be
promising. As a result of that, transduced HSPCs showed to produce
curative amounts of factor VIII [14,163,164] (Fig. 3) (Table 1).

4. LVs application in research and clinical approaches

LV utilization toward cell manipulation provided an arma-
mentarium to immunotherapy, gene therapy, and clinical research. LVs
convoying an RNAi (i.e., shRNA) code to alter gene expression or a
protein-coding gene like green fluorescent protein (GFP) have been
vastly used in a multitude of clinical research areas, especially in
achieving better comprehension of cell signaling pathways
[18,169–175].

Using LV in immunotherapy through designing CAR-T cells and

Fig. 2. Schematic events of lentiviral vector production and transducing target cells. 1- The required plasmids, including gag/pol, env (VSV-G), rev, and transgene in
a mixture with transfection reagents, would be added to HEK293 T cells. 2- After the incubation and transfection process completed, the HEK293 T cells start to
produce the viral particles containing transgene and their necessary viral proteins. 3- Then, the separated supernatant containing viral particles from the HEK293 T
cells would be added to well plates containing the target cells. 4- The viral vectors by their VSV-G protein would bind to the LDL receptors of target cells in order to
transduce the target cells.

Fig. 3. Schematic of LV transduction in Microfluidic system vs. conventional well-plate. In an ideal environment at 37 °C for LVs, their half-life could be considered to
be in a mean range of 600 μm through Brownian motion from their initial point to their endpoint. (B) Traveling in these standard cell culture plates requires
millimeters or centimeters of distances. It brings up that most LV particles degrade before reaching their target. (A) Microfluidic systems provide a far more controlled
micro-scaled environment, which gives the viral particle enough time to reach and transduce the target cell efficiently.
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CAR-natural killer (NK) cells paved a way to prevail upon challenging
hematological malignancies (HMs) such as acute lymphoblastic leu-
kemia (ALL), non-Hodgkin’s lymphoma, and chronic lymphocytic leu-
kemia (CLL) [176–178]. Although at first CAR-T cells were designed to
wipe out the CD19+ cells, lentiviral vector features enabled the further
enhancement of CAR-T cells against a vast range of cell markers. Along
with CD19 CAR-T cell, other tested CAR-T cells in HMs are against CD5,
CD33, CD70, CD123, CD38, and B cell maturation antigen (BCMA)
[179,180]. In this regard, CD5 would be a potential target in T-ALL and
malignancies involving the subpopulation of B cells called B1 cells
[179,181,182]. CD33 is a target in myeloid malignancies, especially
acute myeloid leukemia (AML), and CD123 is expressed in different
HMs, including blastic plasmacytoid dendritic cell neoplasm, hairy cell
leukemia, B-ALL, and AML [179,183,184]. Moreover, CD38 and BCMA
are mostly expressed on myeloma cells, and CD70 has a broad spectrum
of expression in both HMs and solid tumors [179,185–187]. Successful
application of CAR-T cell against HMs brought the idea to use CAR-T
cell against various solid tumors, for example, liver cancer, pancreatic
cancer, brain tumors, breast cancer, ovarian tumor, colorectal cancer,
lung cancer, and currently numerous clinical trials are up to attain this
end [179,188]. LV-based immunotherapy stepped up even more than
before by designing CAR-NK cells. Most recently, Liu et al. produced
allogenic anti-CD19 CAR-NK cells to use on 11 patients, in which all
were in the relapsed phase of non-Hodgkin’s lymphoma and CLL. Fol-
lowing that, the results were promising, in which seven patients showed
evidence of complete remission within 30 days [177]. Among all CAR-T
cells designed using LVs, CD19 CAR-T cells, also known as Kymriah
(Tisagenlecleucel) achieved both EMA and FDA approval, and others
are yet in development or under clinical trial [189]. The future of CAR-
T cell shows to be promising.

Moreover, LV-based gene therapy is an ongoing field in treating
different genetic diseases; for example Sickle cell disease (SCD), trans-
fusion-dependent β-thalassemia, Wiskott-Aldrich Syndrome (WAS),
metachromatic leukodystrophy, two types of severe combined im-
munodeficiency (SCID), Fanconi anemia, cerebral adrenoleukody-
strophy, X-linked adrenoleukodystrophy (XLA) and X-linked chronic
granulomatous disease (CGD) [18,190–195]. Not only can LVs con-
tribute to integrating intact and healthy genes into target cells, but also
they can be a part of the gene-editing process by delivering the CRISPR/
CAS9 system [196]. It is worth mentioning that LV-based gene therapy
toward curing transfusion-dependent β-thalassemia gained a magnifi-
cent achievement by introducing genetically modified EMA-approved
cells called Zynteglo, which is an autologous CD34+ cell encoding βA-
T87Q-globin [189]. Until the end of 2019, There were 22 EMA- or FDA-
approved gene therapy using various kinds of vectors, which Cui-Cui
Ma et al. reviewed all [189].

5. Conclusion

Various systems have been developed for gene delivery, which also
includes viral vectors such as LVs, but all systems have some dis-
advantages of their own. Recently researches on gene delivery systems
through viruses have introduced some methods for enhancing LV pro-
duction and transduction. Now new approaches have been applied to
produce large-scale of these vectors, and also multiple systems have
been added to the field of viral-based gene delivery to achieve a high
transduction rate. Microfluidic systems could be mentioned as one of
the greatest achievements in the field of gene delivery and gene
therapy. Based on what we have mentioned, microfluidic systems are
potential in mimicking in vivo environments, enhancing transfection
and viral transduction. Also, gene therapy and gene delivery techniques
are not cost-effective usually, so the microfluidic approach can reduce
the costs of viral gene delivery due to using lesser reagents and mate-
rials in comparison to other methods, which subsequently reduce the
gene therapy expenses. We think, according to the recent arrival of the
microfluidic system in the area of gene therapy, it promises more

potential that yet to be found.
All in all, exceptional attention has been drawn to LVs in order to

produce clinical-grade vectors. Although significant advancements
have been made by LVs, including gene therapy for some diseases and
easing the way toward immunotherapy by turning T cells and NK cells
to CAR-T cells and CAR-NK cells, yet there are also challenges ahead
that should be taken into consideration. Clinical trial success with LV-
based gene therapy shows promising results, but it should be mentioned
that one of the most significant drawbacks of gene therapy is the cost
that comes with it. Gene therapy advances in a frantic pace that could
be promising to overcome challenges ahead.
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