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Abstract Peroxisome proliferator-activated receptor g (PPARg) is a transcriptional coactivator that

binds to a diverse range of transcription factors. PPARg coactivator 1 (PGC-1) coactivators possess an

extensive range of biological effects in different tissues, and play a key part in the regulation of the oxida-

tive metabolism, consequently modulating the production of reactive oxygen species, autophagy, and

mitochondrial biogenesis. Owing to these findings, a large body of studies, aiming to establish the role

of PGC-1 in the neuromuscular system, has shown that PGC-1 could be a promising target for therapies

targeting neuromuscular diseases. Among these, some evidence has shown that various signaling path-

ways linked to PGC-1a are deregulated in muscular dystrophy, leading to a reduced capacity for mito-

chondrial oxidative phosphorylation and increased reactive oxygen species (ROS) production. In the

light of these results, any intervention aimed at activating PGC-1 could contribute towards ameliorating

the progression of muscular dystrophies. PGC-1a is influenced by different patho-physiological/

pharmacological stimuli. Natural products have been reported to display modulatory effects on PPARg

activation with fewer side effects in comparison to synthetic drugs. Taken together, this review summa-

rizes the current knowledge on Duchenne muscular dystrophy, focusing on the potential effects of natural

compounds, acting as regulators of PGC-1a.

ª 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Peroxisome proliferator-activated receptor g (PPARg) coactivator
1a (PGC-1a) is an important coactivator of several nuclear receptors
regulating mitochondrial function in various tissues including brain,
heart, skeletal muscle, and liver1. PGC-1a was initially discovered
as one of the PPARg-binding proteins present in brown adipose
tissue as a response to cold treatment. PGC-1 coactivators were
reported to possess a vast range of biological effects in different
tissues. Indeed, PGC-1 transcriptional coactivators were revealed to
have an essential role in physiological adaptation viamany signaling
cascades2. PGC-1a regulates nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) pathway by modulating in-
flammatory processes in muscle cells, and the targeting of PGC-1a
in chronic diseases may thus reduce inflammation3. PGC-1a has
been found to act as a reactive oxygen species (ROS) scavenging
enzyme regulator that contributes to the survival of neurons4. More
to the point, in earlier reports, PGC-1 coactivators were found to
possess an important role in skeletal muscle biology by inducing
mitochondrial biogenesis, muscle fiber-type switching4,5, and
functional angiogenesis in skeletal muscle6 (Fig. 1). Indeed, PGC-1
was reported to enhance GA-binding protein (GABP) which is an
important transcription factor controlling the genes involved in
forming neuromuscular junctions (NMJ)7. Furthermore, GABP
activation has been shown to induce utrophin promoter activity in
muscle cells and in muscle tissues8.

A variety of studies have looked into the PPARg-activating
effects of natural products derived from medicinal plants.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Speculative model of the role of PGC-1a in the regulation

of angiogenesis during exercise and in response to ischemia.
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Resveratrol, honokiol, biochanin A, genistein, sargahydroquinoic
acid, amorphastilbol, sargaquinoic acid, magnolol, amorfrutin 1,
and amorfrutin B were demonstrated to display modulatory effects
on PPARg activation with fewer side-effects compared to syn-
thetic drugs9. Therefore, in this review, we aimed to summarize
the current knowledge on muscular dystrophy (MD), focusing on
the potential effects of natural compounds which act as regulatory
agents on PGC-1a.

2. Duchene muscular dystrophy (DMD)

Degenerative disorders targeting muscles, which arise from ge-
netic anomalies in the expression of genes in muscle tissues, are
known as MDs10. MDs are a set of diseases indicated by the
extensive wasting of skeletal muscles due to mutations in genes
responsible for linkage formation between the cytoskeleton and
the basal lamina11,12. Dystrophin protein (427 kDa) is a cyto-
plasmic protein which links with numerous other proteins in the
formation of the dystrophin-associated glycoprotein complex
(DAGC) responsible for hooking up the cytoskeleton of muscle
fibers with the surrounding extracellular matrix (ECM) by means
of the cell membrane11. DAGC connects muscle fiber cytoskeletal
structures with the extracellular matrix and thus ensures the
structural integrity of muscle fibers13,14. MDs are considered to be
a group of heterogeneous disorders, of which the most severe and
common form is DMD15, named in 1868 after Guillame
Duchenne, a renowned neurologist who described 13 boys
affected by this disorder16. Despite the passing of two centuries
from its first description, no cure has been found for DMD to date
and it remains a fatal condition. DMD is accepted as an X-linked
recessive disorder caused by a dystrophin gene mutation which
leads to a loss in expression of functional dystrophin, a cyto-
skeletal protein responsible for facilitating the functionality, sta-
bility, and strength of myofibres18. The key characteristic of DMD
is irreversible and extreme skeletal muscle degeneration associ-
ated with physical incapacitation. Moreover, several patients also
suffer from weakness of the intercostal muscles and diaphragm
which leads to terminal respiratory failure before 25 years of
age10. The consequences of dystrophin inexpression in cardiac
purkinje fibers and cardiomyocytes give rise to progressive car-
diomyopathy and arrhythmia, leading to heart failure in approxi-
mately 10% DMD patients10,19. DMD affects approximately
1:5000 newborn males and occurs in one in every 3500e5000
males born across the world20,21.

DMD’s prevalence has been reported as 19.5 cases in 100,000
live male births in the UK. The incidence in the USA is 15.9 cases
per 100,00022e24. A recent study reported that the methods for
diagnosing DMD have remained the same since around 201018.
DMD is sometimes considered to be an X-linked myopathy,
leading to progressive wasting of respiratory and locomotor mus-
cles. The resultant chronic ventilatory failure has been identified as
a major cause of death25. Absence or deficiency of dystrophin may
lead to progressive wasting of skeletal muscle and lethal heart
failure.

Effective treatment and overall care for DMD is required to
prevent the death of children during adolescence or early adult-
hood. Despite the exploration of several therapies, only cortico-
steroids showed effective benefits17. Novel therapeutic approaches
based on prior studies in animal models are currently undergoing
clinical experimentation with encouraging results. These include
therapies aiming at restoring dystrophin expression and others
aiming at compensating for the deleterious consequences of its
absence in skeletal muscle. Description of novel therapeutic ap-
proaches is far beyond the scope of this review26.

Read-through, exon skipping, and vector-mediated genetic and
cell therapies have been used to restore the expression of dystro-
phin, whereas pharmacological treatments include anti-
inflammatory, anti-fibrotic, antioxidant agents, myostatin pathway
inhibition, neuronal nitric oxide synthase pathway enhancement,
and utrophin upregulation therapies. Read-through therapy applies
to 10% of patients with nonsense mutations, resulting in a pre-
mature stop codon in dystrophin mRNA27.

Of the compounds that can read through premature nonsense
codons, ataluren (PTC124) is currently available online in
Europe28.

In patients with DMD, exon-skipping, applicable to 80% of
mutations, can correct the altered reading frame by targeting the
exon to be skipped with antisense oligonucleotides (ASOs).
Skipping a gene would hypothetically be of therapeutic relevance
for various mutation series29 as DMD is one of the largest genes
known with 79 exons30,31. A functional, shorter, dystrophin is
produced by this process, effectively converting a severe DMD
phenotype to a milder Becker muscular dystrophy (BMD)
phenotype. The major ASO developed to skip exon 51 was
eteplirsen32.

Conditional approval was granted to eteplirsen by the U.S.
Food and Drug Administration (FDA) in 2016. Exon skipping
therapies have grown to target other exons with time. Dystrophin
protein production is restored in DMD by means of vector-
mediated gene therapy, delivering micro/mini domains of dys-
trophin through either viral or non-viral vectors21,33e35. Clinical
trials are currently underway for adeno-associated virus (AAV)
vectors, finalized for micro-dystrophin gene transfer36.

Cell therapy involves the transplanting of either cells provided
by healthy donors or genetically corrected autologous cells, both
capable of producing functional dystrophin37. Myoblasts38,
CD133þ stem cells39, and mesoangioblasts40 are undergoing
clinical trials as potential therapeutic candidates, which are chosen
from a wider range of viable cell types. Of the cell therapy options,
investigations are currently ongoing on induced pluripotent stem
cells (iPSCs) taken from DMD, umbilical cord mesenchymal stem
cells, and bone marrow-derived autologous stem cells. Human iPS-
derived myogenic cells have been transplanted into mdx mice (the
most popular animal model for DMD carrying a point mutation in
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DMD gene), resulting in human-derived dystrophin-positive mus-
cle fibers and an improvement in muscle strength41.

CRISPR/Cas9 technology has been used to induce frame
shifting, exon knock-in, and exon skipping in patient-derived
human iPS cells, raising the possibility of ex-vivo gene correc-
tion followed by autologous cell transplantation for DMD
patients42e44. However, there are serious limitations on treating
DMD patients with current cell therapy technology, including
limits on cell availability, low survival, and migration rates for
injected cells, the risk of tumor formation, and the immune
response to donated cells, with no effective treatment available at
present for the prevention of the progression and occurrence of this
lethal disease condition13,22,45,46.

Pharmacological therapy represents an additional fundamental
approach mainly utilized to limit complications, i.e., inflamma-
tion, atrophy, and fibrosis, generally associated with the dystrophic
process, which can worsen the evolution of the disease and
severely limit the effectiveness of other therapies such as gene or
cell therapy. In particular, it has been shown that the evolution to
fibrosis in DMD is mainly promoted by an excessive inflammatory
response47. Several therapeutic strategies, including prednisone,
deflazacort, and NF-kB inhibitors, have been used to address
inflammation in combination with cell therapy and exon skipping,
with promising results48,49.

A novel steroid analog, vamorolone, which lacks hormonal or
immunosuppressive effects, is also under recent investigation for
its safety and efficacy50.

Relevant results have been also obtained with nitric oxide (NO)
donors and deacetylase inhibitors targeting events downstream of
the genetic defect in both a mouse model of limb girdle muscular
dystrophy and in adult dystrophic patients. In particular, the use of
nonsteroidal drugs (hydrochlorothiazide, HCT) which act as NO
donors has been shown to counteract the progression of the
dystrophic process in a mouse model of limb girdle MD and in
humans51,52.

Studies in animal models have also reported that insufficient
dystrophin deregulates histone deacetylase (HDAC) activity, and
this is followed by progression of the disease through activation of
compensatory regeneration and/or fibroadipogenic degeneration,
thus supporting histone deacetylase inhibitors as potentially
effective pharmacological interventions to counteract disease
progression in dystrophic patients. The beneficial effects of long
lasting HDAC inhibitor exposure have been found in mdx mice a-
sarcoglycan null mice in a model of limb girdle muscular
dystrophy53.

The effects of HDAC inhibitor givinostat have recently been
investigated in DMD patients and a phase 3, randomized, double-
blind, placebo-controlled study is currently ongoing54.

Important emerging research highlights that deregulation of
NO signaling to HDAC contributes to the pathogenesis of the
disease. It has been found that the absence of dystrophin at the
sarcolemma in mdx mice downregulates NO synthase (NOS),
leading to the deficient S-nitrosylation of HDAC2, which controls
the follistatin gene, and this event may ultimately promote muscle
degeneration.

Direct inhibition of HDAC2 by HDAC inhibitors, or inacti-
vation by either NO donors, may lead to the derepression of fol-
listatin, thus promoting myogenesis and disease amelioration55.

These results indicate that HDAC, with HDAC2 in particular,
is an important common pharmacological target for distinct
pharmacological interventions (for histone deacetylase inhibitors,
see the other review56).
3. The PGC-1 coactivators

Coactivators can regulate target gene expression by specifically
affecting proteineprotein interactions through known transcrip-
tion factors possessing DNA-binding activity. Therefore, they act
as transcriptional regulators which do not directly bind to target
gene promoters. For example, myogenic differentiation (MyoD) or
PPARg can induce the differentiation of muscle or adipose cells57.

Transcription may be enhanced by association with RNA po-
lymerase machinery, or by altering the chromatin structure in
target gene promoters57.

A coactivator may sometimes interact with several transcription
factors and vice versa57. Although these interactions are versatile,
they depend on certain protein interacting interfaces and signaling
cues that promote the activation of transcription factors58.

The expression of PGC-1 coactivators was first implicated in
thermogenesis and regulation of energy metabolism49. However,
studies have concluded that it acts in a broader context, and the
overexpression of PGC-1 promotes mitochondrial biogenesis as well
as key mitochondrial functions57,59. In fact, these coactivators are
important in maintaining the homeostasis between glucose, lipids,
and energy60. PGC-1 is also involved in other pathological condi-
tions, such as obesity, cardiomyopathy, and neurodegeneration58.

PGC-1a was the first member of the PGC-1 family identified.
It was found as a PPARg-interacting protein in brown adipose
tissue. PGC-1b is another member of this family and the closest
homolog of PGC-1a. Other members have limited homology58.

Overall, studies on Pgc-1a transgenic mice have showed
remarkable tissue effects due to its overexpression, thus stimulating
subsequent analysis of the role of its physiological expression in
fundamental mechanisms in skeletal muscle and fat61.

In particular, PGC-1a has been found to exert a role in brown
adipose tissue, unlike transdifferentiation. Moreover, PGC-1
coactivators were found to be important in differentiation-
induced mitochondrial biogenesis59.

PGC-1a has interactions with a wide range of transcription
factors, including nuclear respiratory factors, nuclear hormone
receptors, and muscle-specific transcription factors, reacting to
environmental stimuli60.

Summermatter et al.62 reported that PGC-1a is responsible for
the estrogen-related-a-dependent expression of lactate dehydro-
genase B (LDH B) in skeletal muscle, and for the repression of
lactate dehydrogenase A (LDH A). Therefore, PGC-1a co-
ordinates lactate homeostasis, alters the composition of the LDH
complex, and prevents the increase of lactase in blood during
exercise.

ROS, such as superoxides, can damage DNA, lipids, and
proteins, and are the originators of ischemiaereperfusion injury,
aging, and neurodegenerative diseases, such as Alzheimer’s dis-
ease, Parkinson’s disease, and Huntington’s disease. St-Pierre
et al.63 reported that PGC-1a, which has the ability to increase the
activity of mitochondrial electrons, is a regulator of ROS meta-
bolism. Therefore, new therapies should be investigated for con-
trolling these pathophysiological conditions and thus inducing
PGC-1a in the brain. While this is not an easy task, PGC-1a is
inducible in many tissues and responds to important metabolic
pathways of calcium and cyclic adenosine monophosphate (AMP)
signaling63. In fact, Zheng et al.64 identified PGC-1a as a prom-
ising factor in the early treatment of Parkinson’s disease, as PGC-
1a are underexpressed in these patients. The capacity of PGC-1a
to control energy homeostasis indicates its possible suitability as a
target for antidiabetic or antiobesity drugs60,65.
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The involvement of PGC-1 in controlling mitochondrial
biogenesis and energy metabolism was hotly pursued after its
discovery in the 1990s66. The three PGC-1 coactivators were re-
ported to control the mitochondrial metabolism in different ways
despite their structural similarities, and thus different modes of
action. PGC-1a is induced by various stimuli; whereas PGC-1b is
stimuli-unresponsive and maintains basal mitochondrial function;
the action of the third PGC-1 member, PGC-1-related coactivator,
is apparently limited to regulating gene expression and mito-
chondrial metabolism in highly proliferating cells. PGC-1 coac-
tivators bind to various transcription factors or nuclear receptors
which orchestrate target genes expression67.

The role of the transcriptional coactivator PGC-1 in oxidative
stress, inflammation, and angiogenesis is discussed in the
following sub-sections, along with its mechanisms of action.

3.1. The role PGC-1a in oxidative stress

PGC-1a and PGC-1b have emerged as major players that integrate
signaling pathways and exert protective actions against oxidative
stress. They are also recognized as key factors in many oxidative
stress response programs.

In particular, PGC-1a can serve as a master regulator of the
oxidative metabolism and mitochondrial biogenesis, thus acting as
a key regulator of ROS primarily generated by mitochondria. It is
widely reported that PGC-1a modulates ROS scavenging en-
zymes, including the mitochondrial proteins manganese superox-
ide dismutase 1 and 2 (SOD1 and SOD2) and the uncoupling
proteins 1 and 2 (UCP1 and UCP2)66,68. Indeed, overexpression of
PGC-1a results in an increased expression of SOD2 in SH-SY5Y
neuroblastoma cells69, and depletion of PGC-1a by siRNAs pre-
vents the upregulation of SOD1 and SOD2, as well as glutathione
peroxidase 1 (GPX1), another ROS scavenging enzyme, together
with UCP1 and UCP2, indicating that PGC-1a controls cytopro-
tective responses63,70.

Furthermore, PGC-1 (both a and b) gene expression increases
alongside antioxidant defences, under induction of oxidative stress
by H2O2 treatment of mouse embryonic fibroblasts; conversely,
PGC-1 depletion prevents the increased expression of genes
responsible for ROS detoxification in response to H2O2

63, sug-
gesting a protective role of PGC-1 under effects of oxidative stress.

In many diseases, overproduction of ROS by dysfunctional
mitochondria has been associated with decreased PGC-1a
expression. For example, PGC-1a levels were found to be lower in
the kidneys of diabetic rats; while by inducing PGC-1a over-
expression, ROS generation was inhibited via the modulation of
dynamin-related protein 1 (DRP1)-mediated mitochondrial dy-
namics, with a consequent improvement in glomerular mesangial
cell function71.

Interestingly, in Down syndrome (DS), a neurodevelopmental
disease associated with mitochondrial dysfunction and oxidative
stress72, down-regulation of PGC-1a protein levels and activity
has been found in fibroblasts as well as in neural cells taken from
the hippocampus of DS mouse73,74. DS is a genetic disease
characterized by cognitive impairment associated with early
neurodegeneration and aging as well as muscular weakness75.

PGC-1a activation is regulated by three systems: PPARs, 50

adenosine monophosphate-activated protein kinase (AMPK), and
silent mating type information regulation 2 homolog 1 (SIRT1)76.
AMPK phosphorylation promotes expression and activation of
PGC-1a77; similarly, SIRT1 deacetylates and activates PGC-1a,
thereby regulating mitochondrial biogenesis78.
NO has been found to activate PGC-1a through AMPK or in a
P53-dependent manner, with the possible involvement of multiple
pathways simultaneously79. NO has also been found to prompt the
expression of SIRT1 deacetylase inducer, acting via cyclic gua-
nosine monophosphate (cGMP)80,81. Thus, the alteration of
AMPK/SIRT1 pathways, proven to occur in DS74,82, has been
suggested to account for a decrease in PGC-1a activity, and
therefore for mitochondrial dysfunction and ROS, which play
central roles in the pathogenesis of DS72 and in that of neurode-
generative diseases, including Alzheimer’s, Huntington’s, and
Parkinson’s diseases75,83. Activation of PGC-1a by pharmaco-
logical agents has been proven to improve oxidative stress and
clinical phenotype in oxidative stress-related diseases. For
instance, nutraceuticals including resveratrol, administered via
SIRT1 induction, and thiazolidinediones, which induce PPARg
activation, have been reported to counteract oxidative stress and
resultant mitochondrial dysfunction in mouse models of neuro-
degenerative disease84,85. In addition, polyphenols, resveratrol,
and epigallocatechin-3-gallate (EGCG), have been demonstrated
to reverse mitochondrial dysfunction and reduce oxidative stress
in DS cells by acting through the PGC-1a/SIRT1/AMPK axis74,86.
Metformin, which activates PGC-1a via AMPK induction, has
recently been shown to restore the mitochondrial network and to
counteract mitochondrial dysfunction and ROS generation in heart
fibroblasts with chromosome 21 trisomy87.

Notably, several signaling pathways related to PGC-1a acti-
vation/function are deregulated in MD, which in turn results in a
reduced capacity for mitochondrial oxidative phosphorylation88

and the detoxification of ROS89. In the light of these results, an
early pharmacological intervention aimed at activating PGC-1a
and thus reducing oxidative stress and mitochondrial dysfunction
could potentially limit muscle damage and degeneration.

3.2. PGC-1 and inflammation

Inflammation is a tissue process consisting of a series of mo-
lecular, cellular, and vascular phenomena with defensive pur-
poses against physical, chemical, or biological aggression90. As a
process, it is focused on a specific area, though exceptions may
occur in the case of systemic inflammation. In addition,
inflammation is an immediate and unspecific response which can
facilitate the development of a specific immune response. The
inflammatory process is characterized by a migration of immune
cells to the inflammatory focus. As a consequence of the
inflammation, vasodilatation occurs along with an increase in the
permeability of the blood vessels near the affected area, facili-
tating the arrival of leukocytes to the place of inflammation and
the influx of other mediator molecules89,91. The ultimate goal of
inflammation is to eliminate or inhibit the agent causing the
infection or cell damage, and to allow the organism to recover to
normal conditions, restoring the functionality of the affected
tissue or organ92. Inflammation is receiving increasing consid-
eration due to its likely involvement in the development of
various disorders, including MD93e95. Since PGC-1 contributes
to cellular respiration and mitochondrial biogenesis, its adequate
function is essential for skeletal muscle. In this way, repression
of PGC-1 and its associated inflammatory responses are present
in many skeletal muscle diseases96. In addition, PGC-1 also in-
duces the expression and activation of several antioxidant en-
zymes, including catalase, Mn-superoxide dismutase (Mn-SOD),
and GPX, contributing to the improvement of oxidative damage
and inflammation59,97.
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Studies performed in different organs such as the heart, liver or
kidneys evidenced that LPS injection significantly represses
expression of Pgc-1a mRNA98e100. In skeletal muscle, acute treat-
ment with LPS or palmitate seems to exert a dual regulation, with
increased PGC-1 expression in the short-term, followed by long-term
repression101,102. Using myotubes (C2C12) and mouse primary
myotubes as cell models, chronic treatment with tumor necrosis
factor-a (TNF-a) has been found to significantly decrease expression
of PGC-1 (both a and b isoforms)103. In accordance with these data,
chronic exposure to cigarette smoke resulted in TNF-a-mediated
down-regulation of PGC-1a in C2C12 cells and in the soleus muscle
of mice104. In an interesting study, patients with advanced chronic
obstructive pulmonary disease (COPD), with features of muscle
wastage and elevated levels of TNF-a, showed lower expression of
PGC-1a in vastus lateralis muscle biopsies with respect to healthy
smoking control subjects105. Taken together, this indicates that
chronic inflammation leads to a repression of PGC-1 coactivators.

Conversely, diverse studies have reported that PGC-1 could
prevent inflammation. In this manner, muscle-specific PGC-1a
deficient mice presented increased interleukin (IL)-6 in both
circulating blood and in skeletal muscle106. A study investigated the
effects of PGC-1a and b on inflammatory cytokines in C2C12 cells
after stimulation with TNF-a, toll-like receptor agonists, and free
fatty acids107. PGC-1s activation suppressed the generation of
several proinflammatory cytokines by targeting the NF-kB signal-
ling pathway and reducing the phosphorylation of P65. The same
research group also found similar anti-inflammatory effects of
PGC-1a/-1b in muscle-specific Pgc-1a/1b double transgenic mice.
PGC-1s induced the expression of anti-inflammatory factors while
suppressing pro-inflammatory IL-12, which is likely associated
with a M2-type macrophage polarization in skeletal muscle108.
Similarly, PGC-1b has been reported as being capable of sup-
pressing palmitic acid-induced inflammation by inhibiting macro-
phage NF-kB P65109. These results also suggest that elevated
PGC-1s expression contributes to the instauration of an anti-
inflammatory environment.

3.3. The role of PGC-1a in angiogenesis

Angiogenesis, an intricate and highly regulated process, is defined
as the generation of newly formed blood vessels from preexisting
vessels in order to supply oxygen and nutrients to various tissues.
The purpose of angiogenesis is to meet metabolic demands under
physiological (pregnancy, exercise, and embryonic development),
and pathological conditions (such as tumor progression and met-
astasis)110e112. Several growth factors, including vascular endo-
thelial growth factor (VEGF), platelet derived growth factor
(PDGF), fibroblast growth factor (FGF), and angiopoietin are the
main triggers of this process. Regulation of nutrient supply so as
to provide an appropriate volume of metabolic demand is a highly
essential factor for tissues such as skeletal muscle, due to their
high metabolic rates. Due to the regulatory effects of PGC-1 on
various metabolic functions in numerous tissues, recent studies
have focused on the involvement of this coactivator in angio-
genesis, as demonstrated in various in vivo and experimental
studies. For example, Chinsomboon et al.113 reported that PGC-1a
is involved in exercise-induced angiogenesis.

When compared with Pgc-1aþ/þ mice, which had robust
angiogenesis during voluntary exercise, Pgc-1ae/e mice failed to
increase their microvessel density. Exercise was shown to induce
b-adrenergic signaling-dependent expression of PGC-1a. Over-
expression of VEGF also contributes to PGC-1a induction, and this
was found to be mediated by orphan nuclear receptor estrogen-
related receptor alpha (ERRa). These findings illustrate that
b-adrenergic activation of a PGC-1a/ERRa/VEGF pathway is
involved in exercise-induced physiological angiogenesis in skeletal
muscles114. In another study by Geng et al.114, it was found that
PGC-1a plays an important part in exercise-induced angiogenesis,
and mitochondrial biogenesis in mouse skeletal muscles. In a study
on mesenchymal stem cells (MSCs), Lu et al.115 found that
PGC-1a upregulation resulted in the overexpression of hypoxia-
inducible factors (HIF-1a), increased BCL-2/BAX ratio, down-
regulation of caspase 3, as well as consequent enhanced survival
rates and increased expression of proangiogenic factors. In
ischemic hindlimbs of diabetic rats, PGC-1a overexpression was
found to significantly increase the perfusion of blood and micro-
vessel density115. Thom et al.116 showed truncated-PGC-1a
induced VEGF expression and angiogenesis under hypoxic con-
ditions. Conditioned media from cells expressing the truncated
form of PGC-1a strongly prompts migration of endothelial cells
and formation of capillary-like tubes. Transgenic expression of
PGC-1a, specifically in skeletal muscle, induces angiogenesis
in vivo116. VEGF and HIF-1 were demonstrated to be direct targets
of a PGC-1a-mediated increase in angiogenesis in various stud-
ies110e112. Additionally, Rowe et al.6 demonstrated the effects of
PGC-1a in muscle, significantly increasing angiogenesis in aged
and in diabetic mice. PGC-1a induces the secretion of secreted
phosphoprotein 1 (SPP1), and monocyte chemoattractant protein-1
(MCP-1) directed macrophage recruitment, which activates endo-
thelial cells, smooth muscle cells, and pericytes. On the contrary,
PGC-1a induction in Spp1�/� mice leads to blunted arterio-
larization as well as immature capillarization6. The importance of
PGC-1a in angiogenesis is significant to the point that deletion of
this coactivator within skeletal muscle was reported to result in an
impaired angiogenic program113,114,117e120.
4. Role of natural products as PGC-1a modulators in DMD

Natural products have been found to exert protective activity
against MD. Various natural products have been tested, such as
green tea polyphenolics, quercetin, resveratrol, curcumin, and
saponins, using cell and animal models of MD.

A primary culture of skeletal muscle cells was experimentally
tested for the protective activity of green tea polyphenol mixture
and EGCG against oxidative stress121. Treatment of dystrophic
cells with green tea polyphenol blend/EGCG improved the cell
survival, whereas normal cells were protected by green tea poly-
phenol blend and not by EGCG.

Using an mdx mouse model, EGCG was tested for its protec-
tive activity against DMD. EGCG was injected subcutaneously
(5 mg/kg) for 8 weeks122. Improvements in blood chemistry (the
reduced activity of serum kinase), muscle histological changes,
and the electrophysiology of treated mdx mice were recorded. The
numbers of fluorescent lipofuscin granules in soleus and dia-
phragm muscle were significantly reduced to 50% of control. With
the EGCG treatment, the relative area of normal muscle fibers
increased up to two-fold above control. The level of utrophin in
the diaphragm muscles of treated mice was significantly increased
by 17%. In a similar experiment, an mdx mouse dystrophy model
was tested with green tea (0.01% or 0.05%, by weight) adminis-
tered as a diet supplement123. The treatment was found to
significantly reduce necrosis in the fast-twitch muscle elongator
digitorum longue, but with negligible impact on the slow-twitch
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soleus muscle. The treatment was also found to decrease oxidative
stress in the mdx mouse model, thereby improving muscle health
by retarding necrosis.

In a similar study, a dystrophic mdx mouse model was used to
assess the pharmacological effects of green tea extract, including its
major polyphenol compounds, EGCG, and pentoxifyllin124. This
revealed that the tested mice exhibited retarded necrosis of the
extensor digitorum longus muscle. Phasic and tetanic tension was
also increased, rising to normal values. Moreover, the ratio of
phasic to tetanic tension was found to be corrected after the treat-
ment. In a fatigue assay, the treated mice were found to exhibit
30%e50% more resistant phenotypes. There is no evidence in the
literature indicating the mechanism for this protective activity of
EGCG against DMD. However, a recent in vitro study has shown
that an EGCG pre-treatment could exert a protective effect against
oxidative damage induced by 1-methyl-4-phenyl-pyridine in a rat
adrenal pheochromocytoma (PC12) cell line via the SIRT1/PGC-1a
signaling pathway. The authors showed that mRNA expression of
Pgc-1a, Sod, and Gpx1 are upregulated following pre-treatment
with EGCG. In addition, the protein levels of PGC-1a and SIRT1
were increased, suggesting that the SIRT1/PGC-1a pathway is one
of the mechanisms by which EGCG exerts PC12 cellular protection
against 1-methyl-4-phenyl-pyridine damage125.

As reported in section 3, SIRT1, which is found in the nucleus,
acts as a deacetylase on PGC-1a, leading to the formation of
SIRT1-deacetylated PGC-1a.

Saponins, such as digitonin and tomatine, were found to in-
crease the activity of antisense oligonucleotides against DMD126.
In the presence of saponins, a significant enhancement in antisense
phosphorodiamidate morpholino oligomer which targeted delivery
to dystrophin exon 23 was found in mdx mice. This improvement
was up to 7 times that of phosphorodiamidate morpholino olig-
omer alone. Saponin was also found to have lower cytotoxicity. It
was found that saponins increased the efficiency of antisense
oligonucleotide delivery and treatment of MD. Furthermore, a
particular kind of saponin, chikusetsu saponin V, was found to be
able to attenuate oxidative stress induced by H2O2 in human
neuroblastoma SH-SY5Y cells, by increasing the activation of
SIRT1, PGC-1a, and Mn-SOD127. Chikusetsu saponin V is found
in Panax japonicus rhizome. The anti-oxidative and anti-
inflammatory effects of P. japonicus saponins have been under
investigation for the past two decades. He et al.128 showed that
these compounds exert a cardioprotective effect in a rat model of
acute myocardial ischemia.

Resveratrol was found to be effective against DMD. It in-
creases the expression of nucleocytoplasmic shuttling protein
SIRT1126 which positively impacts the activity of SOD,
decreasing ROS levels, and increasing expression of
PGC-1a85,128. PGC-1a was found to regulate type specification of
muscle fiber (switching from fast to slow fiber types), oxidative
capacity, and mitochondrial biogenesis129. It also targets utrophin,
a dystrophin homolog130, and acts as a therapeutic active molecule
against DMD.

In an experiment using the mdx mouse model, 500 mg/kg/day
resveratrol was administered to mice for 32 weeks, and the authors
observed that resveratrol decreased muscle wasting compared to
control. It also reduced oxidative damage and downregulated
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
a-smooth muscle actin, and myofibroblast cells131.

In another experiment, mdx mice were treated with increasing
dosages of resveratrol (0e400 mg/kg/day) for 8 weeks. It was
found that at a 100 mg/kg/day dosage, the resveratrol increased
fatigue resistance in slow-twitch soleus muscle and increased
force in fast-twitch extensor digitorum longus muscle. However,
resveratrol did not induce an increased resistance to injury in
either muscle129. A higher 400 mg/kg dosage resulted in a number
of deaths, indicating the toxicity of this compound. But other
experiments did not show death at similar or higher dosages130.

In another study, resveratrol (100 mg/kg) treatment for 8 weeks
led to an improvement in rotarod performance, centrally nucleated
fibers damage, and oxidative stress using 4e5 week-old male mdx
mice131. Using a similar experiment, mdx mice receiving revera-
trol at a dosage of 100 mg/kg were found to possess higher ac-
tivities of SIRT1 and PGC-1a after 6 weeks of treatment132. When
the time period was increased to 12 weeks, resveratrol was found
to be effective in increasing mitochondrial biogenesis and upre-
gulating the expression of slower myosin heavy chain isoforms.
However, an increased dosage of 500 mg/kg was not found to be
effective compared to the 100 mg/kg dosage.

Overall, the efficacy of resveratrol in vivo may be hampered by
its low bioavailability, and caution should be considered when
extrapolating its laboratory effects to in vivo studies. In fact,
resveratrol exhibits lipophilic characteristics, which promote high
absorption but also subsequent rapid elimination after the first
hepatic passage, contributing to its low bioavailability. Despite
this, resveratrol shows efficacy in vivo. This is likely due to a
variety of mechanisms, such as the reconversion of metabolites
(sulfates and glucuronides) to resveratrol upon arrival in target
organs, the enterohepatic recirculation of resveratrol metabolites
and their subsequent deconjugation and reabsorption in the small
intestine, and the activity of its metabolites133e135.

Quercetin was found to activate SIRT1 and then PGC-1a, and
stimulate mitochondrial biogenesis in skeletal muscles136. It was
found to exert antioxidant activity as well as mitochondrial
biogenesis, and thus be beneficial against dystrophic skeletal mus-
cle. In a study, supplementation with quercetin (0.2%) in three-
month-old mdx mice for 6 months led to beneficial effects on the
diaphragm136. Under this treatment, inflammatory response and pro-
fibrotic infiltration was attenuated along with an increased expres-
sion of oxidative genes and mitochondrial transcription factors.

Curcumin was also found to be effective against MD. In an
experiment, mdx mice were given a diet containing curcumin (1%,
w/v)137. NF-kB activity was unchanged in the muscle, but
muscular contractile activity was improved against control. In
another study, curcumin was administered (0.1e1 mg/kg, i.p.) for
10 days to mdx mice137,138. Curcumin was found to reduce muscle
damage in mdx mice and reduce skeletal muscle necrosis and
muscle fiber size. The dose of 1 mg/kg was found to produce
improvements in muscle function. In vascular smooth muscle
cells, curcumin was found to increase SOD synthesis and aden-
osine triphosphate (ATP) reduction, leading to the formation of
AMPK, which increases NADþ levels and induces SIRT1 acti-
vation139. As a matter of fact, the beneficial effects of curcumin in
MD could be due, at least in part, to its effect on SIRT1. Aside
from these promising results obtained in animal models, the poor
absorption, rapid metabolism, and systemic elimination of cur-
cumin lead to lowered levels of the compound in plasma and
tissue, blunting the possibility of implementing curcumin sup-
plementation for human chronic disorders, such as DMD. Indeed,
considering the progressive genetic nature of the disease, a short-
term treatment is unlikely to positively impact long term muscular
degeneration.

The identification of the molecular signaling contributing to
the crosslink between natural products and PGC-1a remains a
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highly interesting subject. Trains of existing evidence suggest that
PGC-1a transcription is highly regulated through the binding of
transcription factors at its promoter, and these include myocyte
enhancer factor 2 (MEF2), forkhead box class-O1 (FOXO1),
activating transcription factor 2 (ATF2), and cyclic AMP response
element-binding protein (CREB). These factors all enhance tran-
scription of PGC-1a, and are each in turn modulated by different
signaling pathways. In particular, AKT activation (i.e., by insulin)
leads to cytoplasmic sequestration and inhibition of FOXO1,
which physiologically binds and stimulates the promoter in skel-
etal muscle; p38 mitogen-activated protein kinase (p38 MAPK)
activation (i.e., by exercise) phosporylates and activates MEF2
and ATF2, thus stimulates transcription; whereas calcineurin A
(CnA) induces CREB and MEF2-mediated PGC-1a transcription.
Importantly, posttranslational modifications of PGC-1a have also
been shown to modulate its activity and levels by phosphorylation,
acetylation, methylation, ubiquitination, and O-linked N-acetyl-
glucosylation, in particular, by increasing transcription, p38
MAPK phosphorylation, and enhancement of PGC-1a activity140.
Conversely, glycogen synthase kinase 3b (GSK3b), also phos-
phorylates PGC-1a, enhancing its proteasomal degradation due to
oxidative stress while in the nucleus, thus inhibiting its activity141.

Importantly, most natural products interact with molecules
involved in key intracellular pathways, including direct or indirect
interactions with AKT, GSK3b, and p38 MAPK. For example,
several compounds present in natural products negatively target
AKT, p38 MAPK, and GSK-3 signaling activities, leading to in-
hibition of inflammation responses (i.e., quercetin, curcumin, and
berberin). This regulatory behavior has been proposed for poten-
tial treatment of a range of disorders, in particular those which
involve inflammatory processes potentially contributing to
abnormal proliferation and cancer growth142, whereas their role as
intermediates in modulating PGC-1a transcription and phos-
phorylation is as yet to be elucidated.
5. Conclusions

MD comprises a heterogeneous collection of disorders which are
characterized by progressive weakness, loss of muscle strength,
and degeneration. Since most forms of MD are genetic diseases,
no effective treatment currently exists for these pathologies. In this
sense, the search for new therapeutic targets which may contribute
to a reduction in the development and progression of MD is
necessary, as long as we are not able to effectively treat the origin
of these diseases. One of these targets is PGC-1 and its cofactors,
particularly PGC-1a, because it is inducible under physiological
variations and is useful for increasing oxidative metabolism,
mitochondrial biogenesis, angiogenesis, reducing oxidative stress,
and inflammation (Fig. 2). Several natural compounds have shown
a protective activity against MD in various cellular and animal
models, increasing cell survival and reducing necrosis and levels
of oxidative stress. We can highlight the induction of PGC-1a
expression among the mechanisms of action of certain natural
compounds, such as resveratrol and quercetin. However, the
mechanisms of action involved in the observed improvements
have not been studied in depth. In addition, there are currently no
clinical trials with which to compare the results obtained in cell
and animal models, therefore, the therapeutic use of these com-
pounds, while promising, is still in a very embryonic state.



742 Ipek Suntar et al.
Acknowledgments

This work was supported by the crowd funding #Sport4Therapy to
Giuseppe D’Antona (Italy). A. Sureda was supported by Instituto
de Salud Carlos III, Grant Number: CIBEROBN CB12/03/30038.
Author contributions

Maria Daglia, Seyed Mohammad Nabavi, and Giuseppe D’Antona
were responsible for the conception and design of the review. Ipek
Suntar, Antoni Sureda, Tarun Belwal, Ana Sanches Silva, Rosa
Anna Vacca, Devesh Tewari, and Eduardo Sobarzo-Sánchez
collected literatures. Ipek Suntar, Seyed Fazel Nabavi, Samira
Shirooie, Ahmad Reza Dehpour, Suowen Xu, Bahman Yousefi,
Maryam Majidinia, and Giuseppe D’Antona analyzed literatures
and summarized results. Ipek Suntar, Antoni Sureda, Tarun
Belwal, Ana Sanches Silva, Rosa Anna Vacca, Devesh Tewari,
Eduardo Sobarzo-Sánchez, Seyed Fazel Nabavi, Samira Shirooie,
Ahmad Reza Dehpour, Suowen Xu, Bahman Yousefi, Maryam
Majidinia, Maria Daglia, Giuseppe D’Antona, and Seyed
Mohammad Nabavi drafted the manuscript. Maria Daglia, Giu-
seppe D’Antona, and Seyed Mohammad Nabavi revised the
manuscript.
Conflicts of interest

The authors declare that there is no conflict of interest.

References

1. Handschin C, Spiegelman BM. Peroxisome proliferator-activated

receptor gamma coactivator 1 coactivators, energy homeostasis,

and metabolism. Endocr Rev 2006;27:728e35.

2. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in

health and disease. Curr Opin Genet Dev 2008;18:426e34.

3. Eisele PS, Salatino S, Sobek J, Hottiger MO, Handschin C. The

PGC-1 coactivators repress the transcriptional activity of NF-kB in

skeletal muscle cells. J Biol Chem 2012;288:2246e60.

4. Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC. Roles

of oxidative stress, apoptosis, PGC-1a and mitochondrial biogenesis

in cerebral ischemia. Int J Mol Sci 2011;12:7199e215.

5. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional

co-activator PGC-1a drives the formation of slow-twitch muscle fi-

bres. Nature 2002;418:797e801.

6. Rowe GC, Raghuram S, Jang C, Nagy J, Patten IS, Goyal A, et al.

PGC-1a induces SPP1 to activate macrophages and orchestrate

functional angiogenesis in skeletal muscle. Circ Res 2014;115:

504e17.

7. Kummer TT, Misgeld T, Sanes JR. Assembly of the postsynaptic

membrane at the neuromuscular junction: paradigm lost. Curr Opin

Neurobiol 2006;16:74e82.
8. Angus LM, Chakkalakal JV, Méjat A, Eibl JK, Bélanger G,
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