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A B S T R A C T

Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels
and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/
threonine-specific protein kinase which plays a central role in many physiological processes including cardio-
vascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful
situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated
autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert
protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand,
inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy
and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which
can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular
disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of
natural agents like polyphenols via regulating mTOR.
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1. Introduction

Cardiovascular diseases (CVDs) are the main cause of death
worldwide and according to the World Health Organization (WHO),
about 18 million people died in 2015 from CVDs [1]. CVDs comprise a
group of non-communicable disorders of the heart and blood vessels
including coronary heart disease, cerebrovascular disease, peripheral
arterial disease, rheumatic heart disease, congenital heart disease,
thrombosis and pulmonary embolism [1]. In order to reduce the
number of deaths caused by CVDs, groups of elevated cardiovascular
risk such as people with hypertension, diabetes or hyperlipidaemia
need to be carefully referenced, monitored and in some cases medi-
cated. Also, CVDs are a heavy burden on the economies of low- and
middle-income countries, therefore it is of major importance to find
accessible approaches to minimize this impact at health and economic
levels. CVDs can be partially prevented by avoiding an unhealthy life-
style such as tobacco smoking, physical inactivity, excessive con-
sumption of alcohol, obesity and also by implementing a healthy diet,
namely the reduction of salt and consumption of fruits and vegetables
[1].

In fact, prospective studies show an inverse association between the
development of CVDs and the intake of fruit and vegetables [2,3]. This
is mainly due to the presence of high content of polyphenols such as
stilbenoids and flavonoids. However, the cardioprotective mechanism
of action for many of these protective agents has not yet been hy-
pothesized [4,5]. One of the therapeutic approaches for CVDs is the
mechanistic target of the protein Mammalian target of rapamycin
(mTOR). It belongs to the family of phosphatidylinositol-3-kinase-re-
lated kinases (PIKKs) which phosphorylates threonine and serine re-
sidues in its substrates. mTOR is involved in many cellular processes,
such as cell growth, metabolism, proliferation, survival, transcription,
translation, apoptosis, motility and autophagy [6]. The signaling me-
chanism mediated by mTOR is considered as one of the therapeutic
approaches for the treatment of CVDs. The macrolide compound ra-
pamycin is a mTOR inhibitor and its analogs which are so-called

rapalogs are considered as the first generation of mTOR inhibitors [7].
Similarly many polyphenols present in fruits and vegetables such as
resveratrol, catechin and quercetin have been associated with reduction
of mTOR signaling [8]. In this review, we would like to consider the
role of polyphenols on mTOR signaling pathway in cardiovascular
diseases (Tables 1 and 2).

2. Signaling pathway of mTOR

The mTOR (mammalian target of rapamycin) which belongs to PIKK
family (phosphatidylinositol kinase-related kinase) has at its carboxy
terminal a Ser/Thr kinase activity domain. mTOR is a nutrient-sensing
system and represents the catalytic subunit of two multicomplexes:
mTORC1 and mTORC2 (Fig. 1). The regulatory associated protein
called as raptor (KIAA1303) associates with mTOR and forms mTOR1
complex, whereas instead of raptor the mTORC2 complex contains the
protein RICTOR (rapamycin-insensitive companion of mTOR) [9]. Both
complexes contain a common subunit mLST8 (mammalian lethal with
sec-13), Deptor and TTI1/TEL2 complex (which increases the stability
of mTOR). Apart from mTOR, raptor/rictor, Deptorand mLST8,
mTORC1 consists of other raptor binding protein like PRAS40 (proline-
rich AKT substrate 40 kDa), and C2 complex consists of Protor-1
(protein observed with rictor-1) and mSIN1 (mammalian stress-acti-
vated protein kinase interacting protein 1) (Fig. 1) [10,11].

Since the binding proteins are different for the two complexes, the
mechanisms mediated by these complexes are also different. Upstream
regulation and downstream outputs of mTORC1 are the better char-
acterized between the two complexes [12]. mTORC1 is activated by
diverse growth factors and insulin by PI3K and AKT kinases signaling
but also by some nutrients such as amino acids and is repressed by
AMP-activated protein kinase (AMPK), a central sensor of cellular en-
ergy status [13]. mTORC1 plays a major role in the regulation of pro-
tein synthesis, controlling cell growth and metabolism. In contrast,
mTORC2 has been demonstrated to be involved in cell survival, apop-
tosis and proliferation, although conflicting studies exist on its role in

Table 1
Polyphenols that regulate mTOR function and the proposed mechanisms.

References Polyphenols Mechanism of regulation

[77,79–83,86–88]. Resveratrol Inhibition of mTORC1 activation by promoting Deptor/mTOR interaction.
Inhibition of phosphorylation of PDK1, Akt, mTOR and p70S6K1.
Activation of AMPK-dependent inhibition of mTOR pathway.
Reduced expression of the mTOR signaling proteins.
Activation of the mTORC2-Rictor survival pathway.

[89,94–96]. Epigallocatechingallate (EGCG) Inhibition of Akt and downstream targets mTOR and p70S6k phosphorylation.
Inhibition of PI3K/Akt and mTOR activation in an ATP-dependent manner.
Attenuation of the activation of NF-κB.

[97–99]. Honokiol No direct evidence on mTOR inhibition.
Activation of mitochondria-localized histone deacetylase SIRT3.
Induction of PPAR-gamma activity.

[104–106,108,111,112] Curcumin Suppression of Akt and mTOR phosphorylation.
Prevention of FOXO1 nuclear localization and activation of FOXO1-induced autophagy.
Inhibition p300 histone acetyltransferase-dependent acetylation of the transcriptional factor GATA4.
Activation of Nrf2 pathway and inhibition of NF-kB pathway
Induction of mTOR/autophagy axis in cardiac hypertrophy and fibrosis

[113,116–119]. Quercetin Inhibition of mTOR phosphorylation.
Inhibition of VEGFR- 2 dependent Akt/mTOR pathway.
Activation of AMPK pathway via LKB1.
Increased activation of SIRT1.

[122–124], Oleuropein Activation of the phosphorylation of AMPK.
Activation of PI3K, Akt, eNOS and STAT-3 signaling pathways.
Inhibition of iNOS.

[125] Baicalein Inhibition of ERK1/2, NF-κB/p65, calcineurin and Akt/mTOR signaling pathways.
[126] Fisetin Inhibition of mTOR phosphorylation and its downstream effector protein p70S6K.
[127] Cardamonin Disruption of the association between the mTOR and Raptor protein.
[128] Hesperidin Limited excessive autophagy in myocardial infarction by activating the PI3K/Akt/mTOR pathway.
[129] Salvianolic acid A Activation of the Akt/mTOR/4EBP1 pathway.
[130,131] Ginsenoside Rg1 Reduction of AMPK and GSK-3b phosphorylation.

Upregulation of p70S6K
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Table 2
Doses of polyphenols that regulate mTOR function in cellular and animal models.

Polyphenol Dosage

Resveratrol • 50 μM to serum-starved C2C12 myoblasts [134]

• 3 to 100 μM in HT-p21 cells [135]

• 10 μM in endothelial cells [136]

• 20 mg/kg/day in male four-week-old C57BL/6 mice [83]
Epigallocatechingallate (EGCG) • 10–100 μM in cardiac myocytes [137]

• Inhibition of mTORC1 and mTORC2 kinase activities were observed at the Ki values of 0.37 and 0.23 μM [138]
Honokiol • 10 μM for 24 hrs in primary cultures of cardiomyocytes [139,140]
Curcumin • 20 μM in Human Rhabdomyosarcoma Cell Lines (Rh1, Rh30), DU145, MCF‐7 and Hela cells [141]

• 25 μM in colorectal carcinoma cells (HCT116 CRC) [142]

• EA.hy926 endothelial cells treated with curcumin (5‑20 μM) [143]

• 1, 5, 10, 50 μM in the endothelial cell line HUVECs [144]

• 10 μM of curcumin derivate nicotinate-curcumin in THP-1 mocnocyte cell line [145]
Quercetin • 10-50 μM in HUVECs [146]

• 100 mg/kg in male ApoE-knockout (C57BL/6 J background) mice [147,148]
Oleuropein • 1000 and 2000 mg/kg, intraperitoneally (i.p.) for 14 days using a rat model [122]

• 20 mg/kg dissolved in 5% dextrose and administered orally during three or six weeks in a rabbit model [123]

• 100 μM, for 24 h, and then treatment with H2O2 600 μM for 1 h in human adipose-derived mesenchymal stem cells [124]
Other polyphenols • The bioflavonoid baicalein at 25 mg/kg in Wild-type (WT) mice [125]

• Fisetin (10 μM) in neonatal cardiomyocytes [126]

• Cardamonin at 20 mg/kg/day in mice [127]

• Hesperidin (200 mg/kg/day) in Adult male Sprague-Dawley rats [128]

• Salvianolic acid A at 40 mg/kg in Male adult Sprague-Dawley rats [129]

Fig. 1. mTOR: the catalytic subunit of the two
multicomplexes mTORC1 and mTORC2
(mTOR: mechanistic target of rapamycin;
RAPTOR: regulatory-associated protein of
mTOR; mLST8: mammalian lethal with SEC13
protein-8; DEPTOR: DEP domain-containing
mTOR-interacting protein; PRAS 40: proline-
rich Akt substrate of 40 kDa; TTI1: Tel two
interacting protein 1; TEL2: telomere main-
tenance 2; Protor: protein observed with
Rictor-1; mSIN1: mammalian stress-activated
protein kinase-interaction protein 1).

Fig. 2. mTOR regulation by the TSC complex. AKT- Protein kinase B; TSC- Tuberous Sclerosis Complex; Rheb- Ras homolog enriched in brain; BNDF- Brain-derived
neurotrophic factor; mTOR- mechanistic target of rapamycin, ˧ denotes inhibition by Polyphenols (P).
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ageing. Though only little information is available on mTORC2, since
the disruption or deletion of the ricor protein causes a reduction in the
life span, it implies that mTORC2 is also involved in maintaining the
cellular functions of the mammals, which needs to be better understood
[14]. After the binding of extracellular signals with their respective
receptor, the activated PI3K phosphorylates the AKT (Protein Kinase B)
enzyme facilitating the formation of Hamartin-Tuberin Complex (TSC1
and 2 Complex) (Tuberous Sclerosis Complex) and mediating the
mTORC1 and mTORC2 signaling mechanism (Fig. 2) [15]. The down-
stream targets of mTORC1 vary since it controls and balances both
catabolism and anabolism depending upon the change in the environ-
mental conditions. The phosphorylation of the downstream target
proteins 4EBP (eukaryotic translation Initiation factor 4B (eIF4E)
binding protein) and S6K1 (ribosomal protein S6 kinase 1) mediates the
mTORC1 mediated protein biosynthesis. Both proteins mediate an op-
posite effect, because S6K1 which is activated by mTORC1 supports
translation whereas 4EBP which is inhibited by mTORC1 inhibits
translation. mTORC1 also regulates the cell growth through its down-
stream target SREBP (sterol responsive element binding protein) which
controls the lipogenesis process. Other pathways mediated by mTORC1
include purine and pyrimidine synthesis. mTORC1 also has a role in
inhibiting autophagy through its downstream target ULK 1 (Unc-51
Like Autophagy Activating Kinase 1), a serine threonine kinase [16]. On
the other hand, mTORC2 mediates its effect mainly through the
downstream target proteins AKT, SGK-1 and PKC-α which are termed
the AGC-kinase family members [17].

MicroRNAs (miRs) are emerging posttranscriptional modulators of
gene expression which can participate in the pathophysiology of CVDs.
Accordingly, it has been evidenced a cross talk between miRNAs and
the mTOR signaling pathway in CVDs [18]. For example, miR-34 which
is upregulated in the heart in response to stress, targets protein phos-
phatase pH domain leucine-rich repeat protein phosphatase (PHLPP2),
a negative regulator of the PI3K/Akt/mTOR pathway [19]. Also, it has
been evidenced the capability of histone NAD+-dependent deacetylase
SIRT1 to regulate autophagy in cardiovascular diseases through the
Akt/mTOR signaling pathway [20].

3. mTOR signaling in cardiovascular disease

Animal studies carried out by deleting mTOR and inducing genetic
alteration in mTORC1 have shown that mTORC1 is involved in main-
taining the normal cardiac function. The downstream signaling path-
ways of mTORC2 in heart cells have not been well understood.
However, there are reports showing that it interacts with the hippo
signaling pathway [14] which is a highly conserved signaling me-
chanism in all the organisms in regulating the proliferation of the
cardiomyocyte and in maintaining the size of the heart [21]. In heart
failure patients and in diastolic dysfunction experimental animals, the
activation of mTOR and associated S6K1 signaling mechanism have
been observed mainly due to the coordinative effect of different factors
like inflammatory and immune response and the metabolic signaling
[22]. mTOR knockout studies carried out in animals and mTOR/Rheb1
gene deletion studies evidenced that both mTORC1 and mTORC2 are
necessary for the survival of the embryo and the development of cardiac
cells. These studies have revealed that mTORC1 is necessary for reg-
ulating cardiomyocyte homeostasis, proliferation of cardiomyocytes,
protecting the cardiomyocytes from apoptosis, cardiac dysfunction and
ultimately cardiac failure. Deletion of the rictor gene which will affect
the function of mTORC2 also caused abnormality to the cardiac cells
[23]. Hence, the reports reveal that the mTOR signaling pathway is
highly important for the proliferation of the cardiac cells.

However under conditions like cardiac stress and in aging, partial
mTOR inhibition exhibits cardioprotective effect. Since mTORC1 is
needed for maintaining the physiological functions of the heart, for
providing beneficial effect under cardiac stress conditions, only partial
inhibition of mTORC1 will be needed to deal with the mTORC1

malfunction [23]. In this sense, although the inhibition of mTOR sup-
presses myocardial hypertrophy induced by mechanical stresses in an-
imal models, it was reported that overexpressing mTOR mitigates car-
diac dysfunction in response to pressure overload-induced hypertrophy
and reduces the inflammatory response [24].

4. Therapeutic benefits of mTOR inhibitors for cardioprotection

Most cardiovascular diseases are caused by atherosclerotic plaque
development and rupture, which results from a complex interplay of
multiple cell types (endothelial cells, macrophages, smooth muscle
cells, macrophages, etc.) and mechanisms (inflammation, oxidative
stress, immunity, etc.) [25,26]. mTOR inhibition offers benefit for
treatment of many cardiovascular diseases including atherosclerosis.
Drugs targeting mTORC1 inhibition limit the atherosclerosis process
mainly by correcting the functions of the endothelial layer (which is
impaired in the patients) and by inducing autophagy, which reduces the
content of macrophages in the plaques and also causes efflux of cho-
lesterol from the plaques. mTORC1 inhibition also reduces the forma-
tion of the foam cells which are nothing but fat filled macrophages that
takes up LDL and cholesteryl esters [27]. The macrophages which
transforms into foam cell are considered as the marker of early stage
atherosclerosis, hence reduction of the foam cells can be a treatment
option for CVDs. In addition to serving as effective therapeutics for
CVD, mTOR inhibitors have been shown to be effective therapies for
hypertensive heart disease, such as hypertension, cardiac hypertrophy
and heart failure. Hereby, we will discuss the therapeutic potential of
mTOR inhibitors in treating several classes of cardiovascular diseases.

4.1. Role of rapamycin and its derivatives (analogs) as mTOR inhibitors for
cardioprotection

Rapamycin is a natural macrocyclic lactone with 15 asymmetrical
centers and 3 conjugated double bonds isolated from Streptomyces hy-
groscopicus found in Easter Island soilin 1975 [28]. Firstly, studied for
its strong antifungal action, rapamycin soon showed remarkable im-
munosuppressive side effects. This undesirable effect, during the late
eighties, inspired the development as a clinically useful drug (sirolimus)
and gave rise to extensive structure activity relationship studies (SARs)
[29–31]. The first total synthesis was reported in 1993 which was
subsequently optimized [32–34]; however, rapamycin chemical synth-
esis has a purely academic interest due to its complexity [35]. For this
reason, most of the first SARs were based on semi-synthetic modifica-
tion of rapamycin itself in the attempt to optimize the unfavorable
pharmacokinetic profile and reducing the immunosuppressive activity
[30,31]. Common modifications comprise the substitution of the hy-
droxyl residue at the 42-position, ring opening reactions or starting
from fragments of rapamycin degradation. In addition, rapalogs has
also been obtained by enzymatic or genetic manipulations as well as by
muta-synthesis approach and precursor-directed biosynthesis [36–39].
A certain number of natural compounds possessing a chemical structure
similar to rapamycin have been isolated including the macrolactam FK-
506 (tacrolimus, Prograf®), obtained in 1984 from S.tsukubaensis [40]
and ascomycin (FK-520) isolated from S. hygroscopicusyakushimaensis
[41]. These two compounds possess a strong immunosuppressive ac-
tivity [29,42] and have been also subjected to semi-synthetic mod-
ifications [31].

Rapamycin and rapalogs bind, at a low nanomolar level to the
FK506-binding protein (FKBP12, a protein that binds to im-
munosuppressants) at the FKBP biding domain, forming a binary
complex [43]. The resulting complex, through the effector domain of
rapamycin, interferes with the FKBP12-rapamycin binding domain and
induces a conformational change in the mTORC1 active site resulting in
an allosteric inhibition of mTORC1 enzymatic activity [44]. On the
contrary, mTORC2 is not inhibited by rapalogs [45,46]. Nowadays,
three rapamycin derivatives obtained from semi-synthetic modification
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of the hydroxyl residue at the 42-position have been marketed for
human use: temsirolimus (formerly CCI779), everolimus (RAD001),
and deforolimus (AP23573).

Although rapamycin has widely been used as an im-
munosuppressant in patients having renal transplant rejection as well as
a therapeutic drug for renal carcinoma, this compound has broad ap-
plications in cardiovascular medicine [47]. Rapamycin and rapalogs
have been reported to limit and stabilize atherosclerotic plaques in
several experimental animal models of atherosclerosis [48–50]. Me-
chanistically, mTORC1 inhibition by rapamycin and rapalogs inhibits
atherosclerosis by preventing endothelial dysfunction, inhibiting the
proliferation and migration of smooth muscle cell proliferation, de-
creasing macrophage accumulation via inhibiting monocyte adhesion
and enhancing autophagy [51]. mTORC1 inhibition also promotes
cholesterol efflux from macrophages [52] decreasing the extent of foam
cell formation and lipid deposition in the plaques [53]. In clinic,
transplantation recipients have increased the risk of developing CVD.
Treatment with rapalogs decreased the incidence of cardiac allograft
vasculopathy [47]. However, administration of rapamycin and rapalogs
has several side effects, such as dyslipidemia, hyperglycemia and in-
sulin resistance [47] which can be ameliorated by combination therapy
with lipid-lowering statins, PCSK9 inhibitors, and AMPK activators such
as metformin [51]. Moreover, rapamycin has been used as drug-eluting
stents in coronary angioplasty [47]. Nevertheless, caution needs to be
taken when being used in drug eluting stents, since there is a report
showing that negatively affect stent endothelization, thereby increasing
potential risks of thromboembolism after placement of stents [54].

In view of the emerging evidences showing the involvement of au-
tophagy in cardiac remodeling, rapamycin and its analogs could be
effective therapeutic agents for hypertensive heart diseases. mTOR
signaling pathway and associated smooth muscle cell proliferation were
highly activated in pulmonary artery hypertension (PAH) [55]. A recent
study has shown that rapamycin-loaded nanoparticles attenuated PAH
via mTOR inhibitory effects [56]. In agreement with this evidence,
rapamycin also inhibits the development of PAH induced by TSC1
knockout in smooth muscle cells by attenuating activation of mTORC1
and mTORC2 [57]. A recent metabolomics study performed in pul-
monary smooth muscle cells indicates that rapamycin reverses meta-
bolic abnormalities in lipogenesis, glutathione, glycosylation, and NAD
metabolism in PAH [58]. In addition to PAH, rapamycin has been
shown to attenuate cardiac dysfunction and remodeling in animal
models of cardiac hypertrophy and heart failure (induced by transverse
aortic constriction) by inhibiting mTOR [59–63].These studies suggest
that targeting mTOR by rapamycin and rapalogs may represent a novel
therapeutic strategy in treating hypertrophic disease and associated
heart failure.

4.2. Metformin as a cardioprotective agent through mTOR inhibition

Metformin is one of the most commonly used oral anti-diabetic
drugs in the family of biguanide. Interestingly, metformin administra-
tion has also been related to a reduced risk of cardiovascular diseases,
the common complications of diabetes [64]. Diverse evidences reported
that metformin indirectly inhibits mTORC1 through AMPK-dependent
and –independent mechanisms [65]. Metformin has been shown to at-
tenuate the development of atherosclerosis in several animal models.
Giacchi et al. [66] observed that metformin treated hypercholester-
olemic rabbits showed reduced atherosclerotic lesions in the carotid
artery. Marquie [67] observed similar phenomenon of decreased radio-
labelled acetate incorporation into lipids. Recent evidences suggest that
metformin could ameliorate and stabilize atherosclerotic plaques
through several new mechanisms, such as inhibiting oxidized and gly-
cated LDL induced endoplasmic reticulum stress [68], inhibition of
angiotensin II type 1 receptor [69], upregulation of SOD1 [69], re-
pressing monocyte/macrophage differentiation [70], inhibition of dy-
namin-related protein 1 (DRP1)-mediated mitochondrial fission [71],

as well as upregulating anti-aging molecule SIRT1 [72]. A recent study
has shown that AMPK activation by metoformin and other drugs elicits
a common transcriptional program in the ApoE-/- mouse liver, under-
lying the therapeutic potential of metformin in treating cardiovascular
disease [73]. Metformin also prevents MCP1-induced migration of pro-
inflammatory Ly6Chi monocytes from the bone marrow into the plaques
[74]. In addition, metformin attenuates atherosclerosis by promoting
ABCA1, ABCG1 mediated reverse cholesterol transport, as well as
macrophage polarization to anti-inflammatory M2 subtype [75]. Fu
et al. [76] has shown that chronic treatment with metformin (200 mg
kg/d, 6 weeks) diminishes cardiac hypertrophy induced by transverse
aortic constriction (TAC). The protective mechanism is linked to
AMPKa2-dependent inhibition of the activation of Akt/mTOR pathway
[76], thus indicating the therapeutic potential of metformin in pre-
venting pathological cardiac hypertrophy.

4.3. mTOR inhibitory potential of natural polyphenols

4.3.1. Resveratrol
Resveratrol is a wine-derived natural polyphenol that has strong

antioxidant, anti- inflammatory and anti-aging activities. It has pro-
tective effects against several cardiovascular diseases. Recent studies
have shown that resveratrol has the capability to inhibit mTORC1 ac-
tivation by promoting Deptor/mTOR interaction [77]. In 2007, Kueck
et al. reported that resveratrol inhibits glucose metabolism via in-
hibiting Akt and mTOR in epithelial ovarian cancer cells [78]. Later
studies confirmed that resveratrol inhibits mTOR [79] (albeit less ef-
fective than rapamycin) in the vasculature, including smooth muscle
cells and endothelial cells, contributing to its inhibitory effects against
oxLDL induced proliferation of smooth muscle cells and aging-asso-
ciated endothelial dysfunction [80] as well as oxidative stress induced
endothelial injury [81]. oxLDL induced proliferation of smooth muscle
cells is considered as one of the major contributing factors for athero-
sclerosis, which develops the fibro-atheroma plaques, mainly by acti-
vating the PI3K/Akt signaling. This in turn mediates the phosphoryla-
tion of mTOR at Ser2448 and Thr2446 by the Akt enzyme. Treatment of
rabbit femoral smooth muscle cells with resveratrol showed that the
polyphenol was able to inhibit the oxLDL induced phosphorylation of
the proteins PDK1, Akt, mTOR and p70S6K1 [82]. In addition, resver-
atrol was reported to significantly reduce the palmitic acid (PA)-in-
duced generation of reactive oxygen species (ROS) and ameliorate en-
dothelial dysfunction though inducing autophagy mediated by the
AMPK-mTOR pathway in human aortic endothelial cells [83].These
beneficial effects exerted through mTOR inhibition could potentially
contribute to its therapeutic effects in ameliorating atherosclerosis in
several animal models of atherosclerosis [84,85]. Due to prominent
SIRT1 and AMPK activation capacity, the cardiovascular protective
effects of resveratrol could also involve both targets. A landmark study
by Dolinsky et al. [86] has shown that resveratrol reduces cardiac hy-
pertrophy in spontaneously hypertensive rats by activating LKB1/
AMPK-dependent inhibition of mTOR/p70S6 kinase system, suggesting
that resveratrol can be exploited as an effective therapeutic agent for
patients with cardiac hypertrophy. Resveratrol also offers a protective
effect against cardiomyopathy, which is one of the major complications
of heart failure in diabetic patients. In the H9c2 cardiac myoblast cell
line exposed to high glucose combined with palmitate, resveratrol was
able to promote autophagy through inhibition of the mTOR pathway. It
was mainly mediated through decrease in Ser2448 phosphorylation of
mTOR and reduced expression of the mTOR signaling proteins namely
p70S6K1(p70 ribosomal protein S6 kinase 1) and 4EBP1 (4E-binding
protein 1) [87]. Moreover, another mechanism by which resveratrol
exerts cardioprotection against I/R injury involve autophagy induction
by the mTORC2 pathway [88]. In this study, the administration of re-
sveratrol to H9c2 cardiac myoblast cells and I/R rat model attenuated
the activation of mTORC1, but also significantly induced the expression
of Rictor activating the mTORC2-Rictor survival pathway.
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4.3.2. Epigallocatechingallate (EGCG)
EGCG is a bioactive polyphenol isolated from tea which improves

vascular health and diseases. Li et al. [89] first described EGCG as
pharmacological inhibitor of mTOR that limits cardiac hypertrophy. In
the cardiac myocytes treated with angiotensin-II, EGCG was able to
inhibit Akt and its downstream targets mTOR and p70S6k phosphor-
ylation. The beneficial effect of EGCG for the treatment of cardiac hy-
pertrophy is mainly mediated through its activity to block transacti-
vation of EGFR (epidermal growth factor receptor) [89]. EGCG has
been shown to exert broad atheroprotective effects in several animal
models via its anti-oxidant, anti-inflammatory and lipid-modulating
effects [90]. As such, EGCG suppresses vascular inflammation [91],
foam cell formation [92] and the apoptosis of smooth muscle cells [93].
Previous studies have shown that EGCG has prominent protective ef-
fects in ameliorating cardiac hypertrophy. Van Aller biochemically
characterized the inhibitory effects of EGCG on PI3K and mTOR. The
authors conclude that EGCG inhibits PI3K/Akt and mTOR activation in
an ATP-dependent manner with submicromolar K(i) values [94]. Me-
chanistic studies indicate that EGCG (50 mg/kg) inhibited the expres-
sion of pro-fibrotic marker genes (CTGF, FN) by attenuating the acti-
vation of nuclear factor kappa B (NF-κB), suggesting the potential of
EGCG in treating subjects suffering from pressure overload-induced
hypertrophy [95]. In agreement with this finding, Sheng et al. [96]
showed that EGCG (25, 50 and 100 mg/kg) attenuated cardiac hyper-
trophy in rats undergoing transverse abdominal aortic constriction.
Taken together, these evidences indicate that EGCG is a promising
cardiovascular protective drug that can treat cardiac hypertrophy and
probably heart failure in human patients.

4.3.3. Honokiol
In 2015, Pillai et al. showed that honokiol inhibits both agonists-

and pressure overload-induced cardiac hypertrophy in mice by acti-
vating mitochondria-localized histone deacetylase SIRT3. The delaying
of cardiac toxicity by honokiol which is mediated through mitochon-
drial protection is speculated to the effect of honokiol on the target
proteins like EGFR and mTOR [97]. Two recent independent studies
have also shown that honokiol reduces doxorubicin-induced cardio-
toxicity and cardiomyopathy in mice [98,99]. The mechanism is linked
to reducing mitochondrial DNA damage, mitochondria dysfunction,
and enhancing PPAR-gamma activity [98,99]. Although direct evidence
showing the involvement of honokiol mediated mTOR inhibition in
preventing cardiac hypertrophy is lacking, in light of the fact that mi-
tochondria dysfunction including autophagy in present in cardiac hy-
pertrophy, it can be anticipated that the mTOR inhibitory effects of
honokiol can be partially responsible for the cardioprotective effects of
honokiol.

4.3.4. Curcumin
Numerous studies have shown that curcumin, the bioactive com-

pound from turmeric, prevents atherosclerosis in several animal models
via multiple mechanisms, including anti-aging [100], anti-oxidant
[101], anti-inflammatory effects [101]. In 2006, Beevers et al., de-
scribed curcumin as a pharmacological inhibitor of mTOR signaling
pathway in cancer cells [102]. The mTOR inhibitory effects of curcumin
have been subsequently confirmed [103]. Most importantly, curcumin
also inhibits mTOR activation in the vasculature. For example, cur-
cumin was reported to protect endothelial cell against oxidative stress
induced damage and apoptosis via promoting autophagy by mTOR in-
hibition [104,105]. A recent study has shown that nicotinate-curcumin
hybrid impedes macrophage-derived foam cell formation through en-
hancing autophagy, which might be dependent on its mTOR inhibitory
effects [106]. Similarly, another curcumin derivative hydroxyl acety-
lated curcumin, has similar effects in retarding foam cell formation
[107].

A landmark study by Morimoto et al. has elegantly shown that
curcumin reduces the incidence of hypertensive heart disease in two rat

models (i.e., salt-sensitive Dahl rats and myocardial infarcted rats), by
inhibiting p300 histone acetyltransferase-dependent acetylation of pro-
hypertrophic transcriptional factor GATA4 [108]. Later on, the anti-
hypertrophic effects of curcumin were confirmed by other studies using
a rat model of myocardial infarction by coronary artery ligation [109].
In light of the usefulness of transcriptomic analysis in cardiovascular
medicine [110], the authors performed the analysis of curcumin treated
rats undergoing myocardial infarction, and discovered that several
important pathways, such as cytokine-cytokine receptor interaction
could be involved in curcumin-mediated cardioprotection [109]. Cur-
cumin also inhibits diet-induced cardiac fibrosis and hypertrophy by
activating anti-oxidant Nrf2 pathway and inhibiting pro-inflammatory
NF-κB pathway [111]. Though curcumin has been reported to exhibit
protective effect in many studies including myocardial ischemia/re-
perfusion (I/R) injury models through inhibition of mTOR and activa-
tion of autophagy, it is interesting to note that, in isoprenaline induced
cardiac hypertrophy and fibrosis experimental animal model, curcumin
was able to offer a protective effect by activating mTOR and inhibiting
autophagy [112].

4.3.5. Quercetin
Quercetin is an abundant flavonoid found in fruits and vegetables.

In 2010, quercetin was reported to act as mTOR inhibitor by blocking
mTOR phosphorylation in basal as well as radiation treated HaCaT cells
[113]. By inhibiting mTOR, quercetin halts cancer progression via en-
hancing autophagy, cell cycle arrest and apoptosis of cancer cells [114].
The mTOR inhibiting activity could partially contribute the anti-
atherosclerotic effects of quercetin as it was observed in cultured cells
and animal models of atherosclerosis [115]. A recent study has shown
that quercetin inhibits angiogenesis via inhibiting VEGFR- 2 dependent
Akt/mTOR pathway [116]. The accumulation of lipids, especially oxi-
dized LDL, in the liver and macrophages contribute to nonalcoholic
fatty liver disease and atherosclerosis. A recent study has showed that
quercetin attenuates lipid accumulation in the liver by inhibiting mTOR
and CD36, as well as scavenger receptor A mediated lipid uptake [117].
Due to the fact that quercetin activates AMPK pathway via LKB1 in
vascular smooth muscle cells, and contributes to inhibition of PE-in-
duced contraction of rat aorta, it is plausible that quercetin inhibits
mTOR via AMPK dependent pathway [118]. Quercetin also boosts
SIRT1 activation in oxLDL stimulated endothelial cells, which could
also contribute to its mTOR inhibiting effects [119]. Currently, direct
evidence is lacking as to whether mTOR inhibition is involved in
quercetin induced atheroprotection.

4.3.6. Oleuropein
Oleuropein, phenolic bitter compound belonging to the secoiridoids

group is mainly found in unprocessed olive leaves and green olive skin
[120]. Oleuropein has been reported to activate the phosphorylation of
AMPK, antagonizing mTORC1 at the functional level. For example,
Menendez et al. [121] evidenced that extra virgin olive oil (EVOO)
phenolic extracts enriched in the secoiridoids activated AMPK and
suppressed key genes involved in the Warburg effect and the re-
generative capacity of cancer stem cells. Regarding its potential cardi-
oprotective action, the role of oleuropein in chronic doxorubicin-in-
duced cardiomyopathy in a rat model [122]. The treatment with
oleuropein significantly protected against the histopathological, struc-
tural, functional and cardiac alterations induced by chronic DXR ex-
posure in a process mediated by activation of AMPK and suppression of
iNOS. The same group of researchers also investigated the effects of the
effects of oleuropein and ischemic preconditioning in rabbits subjected
to myocardial ischemia followed by reperfusion [123]. The results
evidenced that oleuropein protected normal and hypercholesterolemic
rabbits after an ischemic/reperfusion procedure similarly to pre-
conditioning and reduced oxidative stress. The mechanism of action
was associated to the activation of diverse intracellular signaling
pathways including AMPK but also PI3K, Akt, eNOS and STAT-3. The
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protective activity of oleuropein against oxidative stress and autophagic
cell death in mesenchymal stem cells, which can protect against is-
chemic diseases, were investigated [124]. Oleuropein reduced H2O2-
induced mesenchymal stem cells autophagy and apoptosis through the
inhibition of the AMPK/mTOR signaling pathway.

4.3.7. Other polyphenols
The bioflavonoid baicalein which was originally found in the

Chinese herb, Scutellaria baicalensis, when injected to the mice pre-
vented cardiac hypertrophy and fibrosis induced by angiotensin II. The
study shows that the preventive effect of baicalein against angiotensin
II induced hypertensive heart diseases is associated with its effect in
inhibiting the signaling mechanisms mediated through proteins ERK1/
2, NF-κB/p65, calcineurin and AKT/mTOR [125]. Even the polyphenol
fisetin which is present in many natural plants including strawberries
has a protective effect against cardiac hypertrophy. In the in vitro model
cells, fisetin reduced cardiac hypertrophy by inhibiting the phosphor-
ylation level of mTOR and its downstream effector protein P70 S6 ki-
nase (p70S6K) [126]. In the myocardial infarction induced mice, the
chalconoidcardamonin reduced the cardiac hypertrophy and cardiac
dysfunction by inhibiting mTOR through disrupting the association
between the mTOR and Raptor protein [127]. People who are suffering
from CVDs experience I/R injury. Potential treatments for myocardial
infarction (MI) are also exhibited by polyphenols, which reduces the
infarct size mainly by activating mTOR, since autophagy plays a major
role for maintaining the homeostasis of the myocardium. Though au-
tophagy exhibits a protective effect during MI, excessive autophagy
contributes to facilitated death of the myocytes, which need to be
prevented. mTOR is one of the signaling pathways which regulate au-
tophagy and it is observed through experimental studies that inhibition
of mTOR induces autophagy in the cells. Hence when there is excess
autophagy which happens in MI, one of the best therapeutic approaches
will be to take drugs which inhibits autophagy through activation of
signaling mechanisms like mTOR. It was observed that the flavanon
glycoside hesperidin most commonly present in citrus fruits limited the
excessive autophagy and enhanced the recovery of the heart by acti-
vating the PI3K/Akt/mTOR pathway [128]. Salvianolic acid A, a
polyphenol mainly found in Salvia miltiorrhiza roots, was found to exert
protective effects against renal I/R injury in a rat model of renal injury
and in in vitro model using proximal renal tubular cells (HK-2) [129].
The treatment with salvianolic acid A ameliorated renal I/R injury and
increased tubular cell survival partially through activation the Akt/
mTOR/4EBP1 pathway. The protective effects of ginsenoside Rg1 were
investigated in NRK-52E rat renal tubular cells exposed to aldosterone
which is characterized to increase autophagy and ROS [130]. The
treatment with ginsenoside Rg1 ameliorated the autophagy and pro-
duction of ROS induced by aldosterone, by reducing AMPK phosphor-
ylation and, consequently, maintaining mTOR activity. The same re-
searchers also evidenced similar results after Rg1 administration to rat
podocytes pre-treated with angiotensin II associated to a down-
regulation of the activity of AMPK and GSK-3b and an upregulation of
p70S6K [131].

5. Conclusion and future prospects

The role of mTOR in cardiovascular diseases, although promising,
remains controversial. In fact, if from one side it plays an essential role
in prenatal and postnatal phase in the protection of vascular integrity,
mechanical stress, cardiac structure, compensation of ventricular hy-
pertrophy and preservation of cardiomyocytes from death [132], on the
other side, as described above, inhibition of mTOR functions can be
beneficial in inhibiting atherosclerosis, cardiac hypertrophy and heart
failure. These dual and opposite behaviors may depend on several
variable factors not easy to investigate, such as the “threshold” of
mTOR inhibition or activation, the effects of its positive or negative
modulators in pre-clinical versus pathological conditions, the influence

of mTOR up- downstream effectors on its activity and the level of ex-
pression of its adapter protein regulators. Other confounding factors are
represented by the subcellular localization of mTOR complexes and the
different mode of regulation of mTORC1 versus mTORC2, which im-
plies that the efficacy of an inhibitor on one complex may exert op-
posite effects on the other. In fact, as mentioned above, the protective
effects of mTORC2 against mechanical stress in heart can be reversed to
harmful response in the presence of dual mTOR inhibitors. Therefore,
new and high selective modulators able to differentially affect mTOR
complexes are welcomed. In addition, this class of novel compounds
must show efficacy in both pre-clinical models and clinical trials should
be designed to assess the cardiac effects (development, physiology, and
stress) of mTOR modulation.

To this aim, the use of natural agents, which show the capacity to
interfere with mTOR functions can be highly desirable. However, as
emerged from the above paragraphs, the efficacy of polyphenols as
mTOR inhibitors in cardiovascular diseases suffers of the same critical
issues evidenced for their application in the prevention and therapy of
other degenerative diseases, such as cancer [133]. Shortly, it is very
difficult to identify the polyphenol “first hits”, after they have entered
the cells; therefore, it is hard to discriminate if the downstream effects
measured in terms of cardioprotection represent the direct cause of
their biological activity or epiphenomena due to pleiotropic mode of
action of these compounds. In fact, without the identification of a
specific and direct cellular target, it is very difficult to evaluate their
clinical relevance. An additional key issue regards “who does the job”,
the parental molecule (e.g., quercetin, curcumin, resveratrol aglycones,
etc.) or one of its metabolites? In fact, it is well known and demon-
strated that polyphenols undergo rapid and extensive metabolic trans-
formation in the upper intestinal tract followed by liver, kidney and
peripheral tissues metabolism, as well as in the colon-rectum by colonic
microbiota. Consequently, their circulating concentrations, as agly-
cones, are extremely low and even not compatible with oral adminis-
tration at very high (pharmacological) doses. Finally, the almost total
absence of studies demonstrating the clinical efficacy of polyphenols in
this field raises serious doubts on the possibility that this class of mTOR
inhibitors may find, in a short time, applicative outcomes in the therapy
of different forms of cardiovascular diseases.

To escape from this conundrum, a possible approach may consist in
a careful selection of the experimental models to be employed in these
studies. It appears premature to reach conclusions on the efficacy of
polyphenols as cardioprotective agents via mTOR modulation simply
working on vascular cells or similar cellular models. However, this pre-
clinical approach is essential in view of the identification of the cellular
and specific substrate(s), if any, triggered by the putative active com-
pound. As soon as this goal is obtained, adequate animal models, among
the several available and mentioned above, can help to verify if the
effects of the mTOR inhibitor under investigation, to ameliorate the
cardiovascular functions are confirmed in vivo. In this case, a further
complication regards the need to identify and quantitate the active
metabolites if the systemic concentration of the lead compound is too
low or undetectable. Our prediction is that in the coming years, we will
see a significant progress in this field considering not only the enormous
scientific interest, but also the economic pressure exerted by nu-
traceutical and pharmaceutical companies.
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