
Introduction
It is essential to improve human life, which is always confronted 
with the consequences of viral infections.1 The viruses, which 
lead to the creation of diversified human diseases, have been 
developed along with human evolution.2 More than 219 virus 
species have been identified to be able to infect humans. Many 
viruses can alter host metabolism and innate/immune 
responses.3 Considering the human population, a vast number 
of viral pathogens are possibly used for treatments consistent 
with human vaccines and immunizations activities.4 It is, 
therefore, necessary to produce a wide range of antiviral drugs 
to overcome human viruses.5 Since available antiviral drugs 
and vaccination strategies are still inadequate, new antiviral 
tactics are required to control viruses, and novel nontoxic 
antiviral drugs must be developed to affect different types of 
virus in-vivo and in-vitro being potentially appropriate for 
either therapeutic or prophylactic administration.6-8

Recently, the influenza virus, as an important emerging 
pathogen, threatens human and animal populations. 
Influenza viruses are an important part of Orthomyxoviridae 
family, including three genera of influenza virus A, B, and C. 
Influenza viruses have primarily been introduced with high 

virulence properties involving the risk of potential epidemic 
progression.9-11 The influenza virus genome comprises eight 
negative-sense RNA molecules containing ten major proteins, 
such as hemagglutinin (HA) and neuraminidase (NA) 
glycoproteins as fundamental viral core antigens.12 Influenza 
has been recognized as a key factor of human morbidity and 
mortality for a long time either caused by global pandemics or 
routine seasonal spread.13-16 This virus, with a high mutation 
rate of the RNA genome besides a variety of its multiple 
genomic fragments, develops diversified antigens and novel 
subtypes, enabling the virus to attenuate the performance 
of vaccines and causing antiviral drug resistance.17-19 Thus, 
a novel anti-influenza therapy would be required through 
creative strategies and abnormal targets. 

Double-stranded RNA (dsRNA) activated caspase 
oligomerizer (DRACO) is intended for selective killing 
of virus-infected cells without damage to uninfected ones 
at the same time. The synthetic construction of DRACO 
consists of the dsRNA detection and apoptosis domains.20,21 
Generally, DRACO is known to be non-toxic, affecting 
a broad spectrum of viruses, including influenza virus, 
bunyaviruses, and flaviviruses.22 Most virus-infected cells 
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have long dsRNA helices produced by the virus during 
genome replication and transcription. In contrast, there is 
no long dsRNA for uninfected cells. In this regard, DRACO 
can bind to viral dsRNA to activate the apoptosis pathway 
to kill virally infected cells.23,24 The DRACO is united to a 
recognized protein transduction tag using the corresponding 
protein transduction domain 4 (PTD-4) at the N-terminus for 
cell delivery purposes. Meanwhile, all domains indicated the 
Homo sapiens sequence.25

In this study, a novel wide-range antiviral method, DRACO 
has been developed, which has toxic effects on cells with 
viral dsRNA selectively to kill quickly infected cells with no 
damage to uninfected ones. 

Materials and Methods 
Cell Culture
Influenza virus (A/Puerto Rico/8/34 (H1N1; PR8) and 
MDCK (Madin-Darby canine kidney) cell line were prepared 
from the Applied Virology Research Center, Baqiyatallah 
University of Medical Science of Iran. The culture medium of 
Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, USA) 
was applied in cultured MDCK cells, supplemented with 1% 
penicillin-streptomycin (Gibco, USA) and 10% fetal bovine 
serum (FBS) (Gibco, USA) in a dampened incubator with 5% 
CO2 at 37°C.26

Construction, Expression, and Purification of DRACO
The protein kinase R (PKR) was used as DRACO’s dsRNA 
detection domain with two dsRNA binding motifs in the 
N-terminal domain. The apoptosis induction domain was 
the caspase recruitment area of apoptotic protease activating 
factor 1 (Apaf-1) that binds to procaspase 9. DRACO was 
encoded by the DNA cassette to be cloned into the pET-
32a vector for the expression. The induction of DRACO 
expression was conducted by adding IPTG to the Luria 
broth (LB) medium at a final concentration of 10 mM for 4 
h. Afterward, the E. coli cells were centrifuged (9400 g, 4°C, 
20 minutes) and suspended in PBS buffer by sonication. The 
purification of His-tagged target proteins was conducted 
under the protocol provided by the manufacturer using Ni-
NTA agarose (Invitrogen, CA, USA). By using a BCA Protein 
Assay Kit (Pierce, Rockford, IL, USA), the concentration of 
purified DRACO was found relative to the standard BSA. 
Imidazole was also removed through ultrafiltration by the use 
of a Macrosep® Advance Centrifugal Device (Pall, New York, 
USA).27

TCID50 Assay
The virus titration was performed applying a standard 
TCID50 (50% tissue culture infectious doses) method. In 
brief, after culturing the MDCK cells in 24-well plates for 24 
hours, the 200 μL of virus dilutions in DMEM with 0.5 μg/mL 
TPCK-trypsin was added to each well and incubated for two 
days. The cell monolayer was rinsed with PBS after removing 
the uninvolved viruses. Then cells incubated with various 
concentrations of DRACO (40, 60, and 80 mg/L) for 36 hours 
and the virus yield titration was conducted by the collected 
supernatants. Virus titers were identified as the TCID50.27

Cell Viability Assay
The H1N1 influenza virus-infected MDCK and uninfected 
MDCK cells’ viability was determined after DRACO 
treatment applying 3-(4, 5-dimethylthiazol-2ol) 2, 5-diphenyl 
tetrazolium bromide (MTT; Sigma, USA) assay. The confluent 
cell monolayer was incubated with 100 µL/well and various 
concentrations of DRACO (40, 60, and 80 mg/L) or PBS (in 
triplicates) for further 2 days in 96-well microtiter plates. 
The supernatants were separated from the wells after the 
incubation period, and 50 μL of an MTT solution (1 mg/mL in 
PBS) was added to every well. The plates were again incubated 
for 4 hours at 37°C, and MTT crystals were dissolved by 
adding 100 μL of DMSO (Samchun, Korea). Using the ELISA 
reader (StataFax 2100, USA), the absorbance was read at 
570 nm. The following formula was used for calculating the 
percentage of toxicity: 

Toxicity (%) = [(ODT/ODC) ×100]

Where ODC and ODT stand for the control substance and 
the test’s optical density, respectively.28

Statistical Analysis
Experiments were carried out with three or more separate 
replicates. The SPSS 23.0 software was used to analyze data. 
Student one-way ANOVA and t-test were applied. Differences 
with P values below 0.05 were deemed to be significant. 

Results
Construction, Expression, and Purification of DRACO
According to Figure 1, DRACO was produced with different 
transduction tags, apoptosis induction domains, and dsRNA 
detection domains. Then, the SDS-PAGE was used for 
confirming the DRACO expression and purification (Figure 
1).

Figure 1. DRACO Protein Expression. (a): Protein ladder (b): negative 
control. (c to e): The 60 KDa band of the DRACO protein expression 
in different protein concentration. 

http://www.biotechrep.ir


Sharti et al

J Appl Biotechnol Rep, Volume 8, Issue 1, 2021                                         http://www.biotechrep.ir48

Cell Viability and Cytopathic Effect Results
In Figure 2, the cytopathic effect (CPE) of the H1N1 influenza 
virus in MDCK cells have been presented. The cytotoxicity 
assay was necessary to determine the DRACO antiviral activity 
in the early stage of antiviral drug development. In the case 
of (infected and non-infected) MDCK cells, the cytotoxicity 
was investigated using the MTT assay. As it can be seen in 
Figure 3A, cells incubated in mediums with 40, 60, or 80 
mg/L DRACO after treatment for 48 hours represent relative 
viability of around 100% compared to PBS control. The effect 
of DRACO on the H1N1 influenza virus infection was then 
evaluated through TCID50 assays. The H1N1 influenza virus 
titer was dramatically dropped by DRACO relative to the PBS 
control (Figure 3B).

Discussion
The influenza virus infection is still the main health issue with 
limited choices for treatment and control. Historically, the 
native and recombinant products, as well as their derivatives, 
have been regarded as valuable therapeutic agents.30 Recent 
technological advancements have provided research with the 
evolution of antiviral, especially anti-influenza, drugs from 
native and recombinant products. The DRACO is one of the 
antiviral native and recombinant products.31

The synthetic construction of a DRACO consists of three 
sections, including an apoptosis induction domain, a dsRNA 

detection domain, as well as a transduction tag.32 The 
DRACO can induce apoptosis selectively in cells involving 
viral dsRNA for killing virus-infected cells rapidly with no 
damage to uninfected ones. The DRACO is known to be non-
toxic, affecting a wide range of viruses, such as bunyaviruses 
and flaviviruses.33 Most virus-infected cells have long dsRNA 
helices produced by the single- or double-stranded RNA 
viruses during genome replication and transcription.34 In 
contrast, there is no long dsRNA for uninfected cells. In this 
regard, DRACO can bind to viral dsRNA in order to activate 
the apoptosis pathway to kill virus-infected cells through the 
cleavage of a variety of cellular proteins.35 

The DRACO inhibitory impact is also associated with two 
natural cellular procedures: one in dsRNA detection in the 
interferon pathway and the other in apoptosis induction in 
the apoptosis pathway. 

In this study, DRACOs were generated with various dsRNA 
detection domains, apoptosis induction domains, as well 
as transduction tags (Figure 1). Construction, expression, 
and purification procedure of our study results revealed 
that synthesized DRACO comprised three sections of an 
apoptosis induction domain, a dsRNA detection domain, and 
a transduction tag. For this purpose, the MTT cytotoxicity 
assay method was used. This study evaluated the anti-
influenza virus activity of DRACO in vitro on the MDCK 
cell line, as represented by the effectiveness against the H1N1 

Figure 2. Cytopathic Effect (CPE) of H1N1 Influenza Virus in MDCK 
Cells. (a): phase-contrast image of untreated MDCK cells. (b): H1N1 
influenza virus treated cells. The values were normalized to those of 
control group. 

A

Figure 3. (A) The cytotoxicity of DRACO in MDCK cells (infected 
and non-infected cells) was measured using the MTT assay. Cells 
were incubated with different concentrations of DRACO or PBS for 
48 h, and then cell viability assay was performed. (B) Virus titers in 
virus infected cells (MOI=0.1) were determined after treatment with 
DRACO or PBS for 36 h. Different superscript letters on column of 
figure show statistically significant differences between the groups 
(P<0.05).
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influenza virus. Regarding the cell viability tests, DRACO 
had a dose-dependent antiproliferative effect on infected 
MDCK cells compared with uninfected MDCK ones. Rider 
et al1, revealed that DRACO rapidly entered into cells and 
induction the apoptosis in cells transfected with dsRNA.23,36 
In an uninfected cell, dsRNA was absent, cell viability was not 
reduced, and the apoptosis percentage was not significantly 
increased. While DRACO made no change in the survival of 
uninfected cells population, it reduced viral titers and CPE in 
virus-challenged cells. Thus, the reduced virus-infected cells 
directly led to a reduction in viral titers and CPE. Guo et al 
indicated that DRACO was capable of reducing viral titers, cell 
viability, IFA, and CPE in virally infected cells contributing to 
inhibit PRRSV infection. They also stated that DRACO would 
be a promising anti-PRRSV therapeutic drug.24 Accordingly, 
DRACO has a significant dose-dependent antiviral impact on 
infected MDCK cells but not on uninfected MDCK ones. 

Conclusions
Overall, it can be concluded that DRACO has exhibited 
strong antiviral activity against the H1N1 Influenza virus-
infected MDCK cells. The DRACO also has the potential to 
develop therapeutic and prophylactic strategies for the H1N1 
Influenza virus infection. Nevertheless, the DRACO antiviral 
efficacy in-vivo must be examined through a clinical analysis 
of plenty of animals.
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