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A B S T R A C T   

A genome-wide association study (GWAS) is a standard population-based technique for identifying the heritable 
genetic basis of complex diseases by discovering correlations between trait variations and allele frequencies of 
genetic markers. This article aims to help fill gaps in data pre-processing and GWAS methodologies by reviewing 
novel techniques and methodologies. Data pre-processing performed prior to a GWAS presents challenges in 
Hardy-Weinberg (H–W) estimation, genotyping and accounting for factors such as sample structure. Recent 
developments towards overcoming these challenges are presented: the likelihood ratio test for H–W estimation, 
sequencing for genotyping, and techniques for dealing with sample structure. Traditional statistical methods 
cannot provide a way to insightfully interpret the data generated from high-throughput techniques; therefore, 
novel directions in GWAS methodologies are reviewed using efficient statistical methods, which are flexible 
techniques for performing genetic association analysis when factors such as non-random sampling or population 
structure occur. Despite the development of these methods, genotyping costs and an increased capacity for large 
dataset analysis have motivated researchers to examine tissue-specific signals. This review discusses how pro-
spective and retrospective association analyses can be used to consider binary traits, address non-random 
ascertainment, and increase the capacity for large dataset analysis. Importantly, for disease susceptibility, rare 
variants can represent a large portion of genetic markers, and this article reviews some association methods for 
rare variant detection. In conclusion, the recent developments in GWAS data preparation and methodologies 
reviewed in this article can overcome most current challenges in the field and will also address future challenges.   

1. Introduction 

A genome-wide association study (GWAS) is a population-based 
technique that identifies correlations between trait variations and 
allele frequencies of genetic markers throughout the genome [1]. This 
article aims to fill gaps in GWAS pre-processing and methodologies by 
reviewing novel techniques and methodologies. Initially, new geno-
typing approaches are reviewed that reduce time and costs and that 
were developed by using next-generation sequencing (NGS). Then, in 
data pre-processing, in cases when sample structure is unobserved, 
several methods are reviewed to account for ancestry or family 
relatedness. 

Traditional statistical methods cannot be used to insightfully inter-
pret data generated from high-throughput techniques [2]. Novel di-
rections in GWAS methodologies are reviewed that use robust machine 
learning methods such as likelihood-based methods that can be used to 

obtain more valuable results from a GWAS. One of the objectives of 
machine learning can be early-stage diagnosis and predictions that can 
be used to discover heritability from genetic data [2]. 

On the other hand, in genetic association studies, a sampling design 
ignoring variable components, population structure, non-genetic effects, 
gene-environment interactions, epistasis and phenotype-based ascer-
tainment will confer a reduced statistical power, leading to type 1 errors 
and phenotype model misspecification. The approaches reviewed in this 
article that can be used when non-random ascertainment is common are 
prospective and retrospective studies [3]. Since the environment and 
multiple genetic factors play important roles in the aetiology of complex 
disorders, some GWAS methods that consider tissue-specific signals are 
reviewed. On the other hand, rare variants contribute substantially to 
disease susceptibility, and some GWAS methods for detecting rare var-
iants are reviewed here. 
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2. Linkage analysis and association mapping 

Phenotypic variants are determined by genetic dissimilarity among 
individuals and are thus encoded by their DNA sequences. Many phe-
notypes are characterized as quantitative in nature and complex in 
aetiology, meaning that their mutational space is very large or that 
multiple genetic and environmental causes contribute to their varia-
tions. Linking phenotypic diversity and the genotypic diversity captured 
by genetic studies can provide genotype-to-phenotype mapping. 
Discovering the genetic basis of phenotypic traits can provide unprec-
edented views into the genetic architecture of phenotypic traits and their 
modes of inheritance [4]. 

Genetic linkage analysis is a powerful tool for assessing the tendency 
of genetic markers to be inherited together over generations on the basis 
of their physical proximity in the genome. This kind of analysis can be 
applied for rare disorders to successfully identify contributing genetic 
variants [5,6]. Linkage analysis involves using genetic markers 
throughout the genome as well as the genotypes of affected families to 
reveal the segregation of genetic markers with a disease. Linkage anal-
ysis has largely been applied to detect common variants. Linkage anal-
ysis relies on only one or two generations, and when some parental 
genotype data are missing, type I and II errors can be increased by 
incorrect marker allele frequencies [3]. 

The advantage of linkage analysis is its ability to detect variants with 
large effects; its disadvantage is its poor ability to identify small-effect 
variations. In general, the statistical power of genetic linkage analysis 
is the main concern in studies employing such analysis, and factors such 
as genotyping, allele frequencies, the strength of genetic effects and the 
heterogeneity of the locus or trait are fundamental to such studies [5,6]. 
Locus heterogeneity occurs when a disease is linked to multiple loci 
independently. Disease heterogeneity means that the disease has 
different subtypes, stages or grades and that different genes and 

functional processes may be linked to distinct disease grades or subtypes 
[7]. 

Association analysis is an alternative mapping method that is pop-
ulation based and useful for detecting small-effect variations using case- 
control individuals. A difference in the number of generations is one of 
the most important differences between linkage and association ana-
lyses. Association analysis is performed in a population of unrelated 
individuals to evaluate the association between a measured phenotype 
and genotyped genetic polymorphisms. The GWAS method is a 
population-based technique that identifies correlations between trait 
variations and allele frequencies of genetic markers throughout the 
genome. The differences between linkage and association analyses 
summarized in Fig. 1 may lead to inaccurate estimates of rare variants 
when using association analysis, which will be explained in detail in the 
last section of this review [1]. Initially, the coefficient of the kinship 
matrix is computed, and then different statistical methods can be 
compared to select an appropriate one for the GWAS and to identify 
single-nucleotide polymorphisms (SNPs) significantly associated with a 
specific disease. Such studies are useful in personalized medicine, which 
aims to identify the genetic risk factors and biological underpinnings of a 
specific trait [8]. 

Based on single-SNP analysis, the GWAS approach typically uses 
individual SNPs to assess their association with a phenotype of interest 
while ignoring other SNPs. However, for most complex phenotypic 
traits, an unexplained proportion of heritability is attributable to the 
polygenic nature of traits. To resolve this problem, some multi-locus 
association techniques have been developed to test for joint effects of 
multiple genetic variants on genes, pathways and traits [9]. Initially, the 
GWAS approach was applied to human diseases, resulting in great 
progress. Additionally, GWASs have been extended to the field of animal 
genetics and breeding in cases in which a large number of SNPs are 
available [10]. For example, in domestic animal breeding, GWASs have 

Fig. 1. Linkage analysis and association mapping. a. A difference in the number of generations is one of the differences between linkage analysis and association 
mapping. b. Another difference between the two approaches is that the linkage analysis is based on physical proximity and the association study is based on the 
correlations between allele frequencies and trait variations. c. Detection of common variants with major effects or small effects is another difference between the two 
approaches; rare variant association analysis has been developed. d. Using the linkage analysis of rare disorders and the association studies of common disorders is 
one other difference between them. 
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been used to identify regions with pleiotropic effects on quantitative 
traits such as milk yield in dairy cattle and average daily gain in beef 
cattle. The GWAS approach can reveal the genetics of complex com-
mercial traits, such as those of domestic animals, thereby allowing 
marker-associated selection to be performed [11]. 

Similar to the statistical power of linkage analysis, that of association 
studies aiming to detect underlying loci depends on available sample 
size, allele frequency, effect size, locus and disease heterogeneity and 
genotyping. Selection of an appropriate SNP array to increase genome 
coverage can result in the mapping of more relevant loci. In populations 
of European descent, a denser array can provide more significant SNPs 
in true association areas. Despite the availability of saturated GWAS 
arrays, using the latest Haplotype Reference Consortium panel [12] for 
such populations has some benefit with regard to imputing more SNPs. 
For both linkage and association analyses, disease heterogeneity has 
negative effects on statistical power and the ability to detect underlying 
loci because each locus might determine only a subset of cases and 
considering one SNP at a time in linkage or association analysis reveals 
only its marginal effect. One way to increase the power of linkage or 
association analysis and increase the marginal effect of the true locus is 
genetic enrichment. This consists of selecting special characteristics of 
the phenotype, such as cases with recurrence, early onset or a family 
history [1]. 

3. Developments in GWAS data pre-processing 

Prior to performing a genetic association study, the local linkage 
disequilibrium (LD) structure of the whole genome needs to be quanti-
fied and assessed. To identify suitable tag SNPs and their genotypes for 
performing a GWAS and to study the LD pattern, a labour-intensive 
process of genotyping a large number of SNPs in a small subset of sub-
jects must be carried out. This process is often performed for similar 
genomic areas by several researchers, resulting in a high degree of 
redundancy. Therefore, the International HapMap Project began in 2003 
to estimate the LD between locus pairs [13]. Large-scale projects such as 
the 1000 Genomes Project [14] and the International HapMap Project 
have been used in the last 5–7 years to characterize genetic variants in 
different populations [15]. The efforts of the HapMap Project and se-
lection of tag SNPs have decreased genotyping costs and have led to 
major improvements in related technology. Information from early 
proper GWASs was incorporated and used to develop SNP chips with 
adequate coverage for the entire genome. The resulting SNP chips have 
been used in recent studies and for most ethnicities to search for disease 
loci throughout the genome [16,17]. 

The HapMap Project has resulted in the most important functional 
genetic database and provided references for genetic association ana-
lyses and predicting the genetic causes of phenotypic traits. For example, 
genotype data for different populations can be downloaded from the 
HapMap website (http://hapmap.ncbi.nlm.nih.gov) [18–20]. Addi-
tionally, SNP allele frequencies can be obtained for a specific population 
and applied in comparisons and further analyses [21]. 
Haplotype-tagging SNPs for a specific population that can be used for 
association studies are also available from HapMap [22], and genetic 
relationships between different ethnic groups can be examined using 
HapMap results [23]. 

Estimates from association studies based on LD between SNPs can 
reveal correlated SNPs in an LD block that are inherited together [24]. 
Genetic association studies test for differences between case and control 
allele frequencies. To ensure that the case-control status is the only 
distinguishing characteristic in such studies, it is critical that all case and 
control samples be selected from the same population with the same 
ancestry. Failure to do so may lead to false positives, i.e., spurious sig-
nificant associations between genetic variations and quantitative traits 
that originate from differences in population ancestry [1]. 

In addition, filtering out low-quality SNPs can minimize bias in 
GWASs. The minor allele frequency (MAF), missing call rate (MCR) and 

Hardy-Weinberg equilibrium (HWE) are common metrics used for SNP 
filtering. Any deviation from HWE may be the result of genotyping er-
rors. Association studies and many other approaches rely on Hardy- 
Weinberg (H–W) assumptions to arrive at valuable and exact results 
[25]. Because the genetic markers on the X chromosome differ from 
those on autosomes, as applied in PLINK software [26], only females are 
considered for H–W proportion testing. Moreover, the “genetics” R 
package [27] used in population genetic studies does not distinguish 
between markers on autosomes and the X chromosome. Such analyses 
are inadequate and produce bias in testing for departure from H–W 
proportions. Therefore, four tests that consider both males and females 
and distinguish between autosomes and X chromosomes have been 
proposed for H–W proportions: the likelihood ratio test, the chi-square 
test, the permutation test and the exact test [28]. 

Genetic imputation is routinely used to improve the power of asso-
ciation studies. For common variants, the pre-filtering process usually 
does not have major benefits regarding the accuracy of imputation and 
may actually impair it because the pre-filtering process potentially 
weakens the strength of the LD structure, whereas imputation algo-
rithms usually depend on the LD structure between available and 
missing genotypes. For example [29], investigated the performance of 
imputation algorithms such as MaCH and IMPUTE [30,31] while using 
pre-imputation filtering, and the authors concluded that very restrictive 
cut-offs are required for pre-filtering processes involving HWE. Prior to 
any downstream statistical analysis, when such restrictive pre-filtering 
has been applied for imputation, additional post-imputation quality 
control is suggested. With this information, an H–W proportion test prior 
to the imputation step might not be necessary but may be used as a 
post-imputation quality control procedure [32,33]. 

3.1. Genotyping by sequencing 

The process of determining individual genetic variants is called 
genotyping, and different methods can be used for genotyping 
depending on the available resources and variants of interest. Using 
genotyping chips is an accurate and efficient method that searches for 
many common variants at once [25]. Dense arrays using chips with large 
overall coverage and many SNPs can be used for some populations, such 
as Africans, with a genome that has had more time to recombine [34]. In 
contrast to dense arrays, in silico genotyping of a particular region can 
provide a limited number of significant SNPs [12]. 

To study genetic variations, new alternative approaches to geno-
typing that reduce sequencing and time costs have been developed that 
utilize NGS. Modern sequencing technologies have greatly improved 
genetic mapping by increasing speed and resolution. To perform studies 
such as GWASs, genotyping by sequencing (GBS) is a low-cost procedure 
that can help reveal SNPs [25]. Indeed, large-scale population genetic 
analysis aiming to identify genetic variants is possible via GBS. Although 
GBS is a cost-effective method, its associated data analysis is compli-
cated and requires complex bioinformatics because of extensive missing 
data. Some bioinformatics workflows have been developed for analysing 
GBS data, but additional packages are required to reduce the level of 
complexity of such data. Platforms for GBS data analysis include 
Fast-GBS, Stacks, GB-eaSy, IGST and Tassel-GBS [35,36]. 

3.2. Sample structure 

With data pre-processing, the effectiveness of GWAS data analysis 
increases with the number of samples. GWAS can analyse associations 
between a sample’s clinical conditions and single allelic variants. As-
sociation rule mining (ARM) can be used to identify multiple associa-
tions of allelic variants. As shown in Table 1, GWAS association rule 
mining in Spark (GARMS) is a scalable software framework comprising 
two steps, the pre-processing and mining association rules, for the 
frequent itemset [37]. 

Known or unknown sample structure, i.e., ancestral or familial 
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relationships, is a common confounding factor in association studies. In 
cases in which the sample structure is unobserved, the linear mixed 
model (LMM) can be applied to account for ancestry or family related-
ness by including principal components (PCs) based on the population 
structure [38]. The generalized LMM is a combination of the generalized 
linear model (GLM) and LMM. Generalized linear mixed model associ-
ation tests (GMMATs) [39] and the case-control retrospective associa-
tion test (CARAT) [40] are applicable to samples with a population 
structure or stratification. In the case of related samples, PC analysis 
must be used with care because of the occurrence of variants with low 
MAFs and an unstable relatedness matrix. Therefore, PC analysis based 
on common genetic variants can be employed to test for population 
structure in sequencing data [41]. Another study by Ref. [42] improved 
statistical methods for association studies, reducing the effect of a con-
founding population structure. Thus, appropriate methodologies ac-
counting for population structure must be developed to apply 
sequencing data in rare variant association studies. 

Because of the high computational cost, the application of GLMs in 
large-scale GWASs of binary traits is often limited. To overcome such 
problems and perform appropriate estimation, some fitting algorithms, 
such as the comprehensive R archive network (CRAN) package, and 
GMMAT [39] have been proposed. For a binary-trait GWAS, 
non-random ascertainment requires special attention. Several methods, 
such as learning and evaluating association patterns (LEAP) [43] and the 
liability threshold-based mixed model association (LTMLM) statistic 
[44], have been proposed for binary-trait GWASs dealing with 
case-control ascertainment. As an extension of the LTMLM method, the 
association statistic LT-Fam [44] can be used for case-control ascer-
tainment in the case of a family-based design. Finally, to make the 
pre-processing section clearer, the methods reviewed in this section are 
summarized in Table 1. 

4. Machine learning in GWASs 

Traditional statistical methods cannot provide a way to insightfully 
interpret data generated from high-throughput techniques. To interpret 
and analyse large data, machine learning models have been developed. 
Machine learning has the potential to discover hidden patterns within 
genetic information that can help reveal disease pathogenesis. “Machine 
learning” is a synonymous term with “artificial intelligence” in which 
computers can make decisions by learning from data and with minimum 

human intervention. Machine learning approaches can also be applied 
to perform single or multiple SNP association studies to identify 
genotype-disease relations [45]. As shown in Table 2, machine learning 
approaches for GWAS range from simple regression analysis to random 
forest, deep learning models or other complex ensemble models [46]. On 
the other hand, machine learning approaches such as support vector 
machines can be applied to perform GWASs when combined with 
regression analysis [2]. 

When multiple causal variants occur at a locus associated with dis-
ease risk, conditional analysis can be performed. Furthermore, disease- 
associated variants can be prioritized using Bayesian approaches [47]. 
For example, previous meta-analyses of breast cancer have indicated a 
complex association pattern when multiple signals around a locus are 
involved. In these examples, conditional analysis was applied and 
indicated that some of the variants identified with the GWAS approach 
did not show similar residual associations, which may have resulted 
from strong links with functional variants [48,49]. 

A previous study by Wang et al. [50] evaluated the effect of using 
non-random samples for statistical inference of associations. The 
method included a likelihood-based statistical test using non-random 
samples and a conditional probability of the genotype at one locus 
given the genotype at another locus. For this analysis, gene segregation 
of marker and disease loci was assumed for randomly mating pop-
ulations, with an “M” or “m” allele located at a genetic marker’s locus 
and an “A” or “a” allele at a disease locus; the “A” allele is the allele 
responsible for the disease. In case-control samples selected 
non-randomly, the conditional probability distribution of genotypes at 
two loci is approximately the same as the specific population’s genotypic 
distribution and is thus reliable for estimating population genetic pa-
rameters. As a result, the method developed by Wang et al. [51] yields 
large improvements in comparison with other approaches for evaluating 
LD in cases in which non-random samples are used. Some examples of 
such studies are discussed elsewhere [52,53]. 

For this kind of association analysis, the population genetic param-
eters that are used are the coefficient of LD (D) and the genotypic dis-
tributions at marker and disease loci, called the marker allele frequency 
(P) and disease allele frequency (q), respectively [51]. The conditional 
probability distribution of a marker genotype given a disease genotype 
and the conditional probability distribution of a disease genotype given 
a marker genotype are written in terms of population genetic parame-
ters. In this analysis, the conditional probability distributions of marker 
and disease genotypes are latent variables. The expectation maximiza-
tion (EM) algorithm can be used as a statistical method for estimating 
the maximum likelihood of unknown parameters in statistical models 
with latent or unobservable variables [54]. 

A likelihood-based machine learning GWAS method was developed 

Table 1 
GWAS Data preprocessing. Stages for GWAS data preprocessing and the 
methods using for them.  

Preprocessing stage Methods 

Identifying SNP allele frequencies for a 
specific population 

Using the results of the HapMap project 

Sample selection Selecting case and control samples from 
the same population with the same 
ancestry 

Low-quality SNP filtering Minor allele frequency (MAF), missing 
call rate (MCR) 

Hardy-Weinberg equilibrium (HWE) to 
avoid genotyping errors 

Likelihood ratio test, chi-squared test, 
permutation test and the exact test 

Genetic imputation MaCH, IMPUTE 
Analyzing genotyping by sequencing 

data 
Fast-GBS, Stacks, GB-eaSy, IGST and 
Tassel-GBS 

Considering sample structures and 
family relatedness using principal 
component analysis 

Generalized linear mixed model 
association tests (GMMATs), case-control 
retrospective association test (CARAT) 

GWASs of binary traits comprehensive R archive network 
(CRAN) package, GMMAT, learning and 
evaluating association patterns (LEAP) 
and the liability threshold-based mixed 
model association (LTMLM) statistic 

Handle mining values and noises (GWAS association rule mining in Spark) 
GARMS  

Table 2 
GWAS methodologies. Different techniques to perform GWAS and some 
methodologies for them.  

Performing GWAS Methods 

Machine learning in 
GWAS 

Likelihood-based, random forest, deep learning, support 
vector machine 

Retrospective 
association study 

case-control 
retrospective association test (CARAT), CERAMIC, 
longitudinal binary-trait retrospective association test 
(LBRAT), retrospective 
generalized linear mixed model-based association test 
(RGMMAT) 

GWAS on transcriptome PrediXcan, Transcriptome-wide association studies 
(TWASs), summary Mendelian randomization (SMR) 

Rare variant detection Sequence kernel association test (SKAT), family-based 
SKAT (FamSKAT), burden tests, minimum p-value 
optimized nuisance parameter 
score test extended to relatives (MONSTER), pedigree 
disequilibrium test (PDT), variance component tests, 
omnibus tests, non-threshold rare (NTR) method  
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by Wang et al. [51] and used in a study by Mortezaei et al. [55] on 
Parkinson’s disease (PD). To further analyse the output of the GWAS, 
heritability and annotated genes including or close to significant SNPs 
have been studied. Similarly, such likelihood-based machine learning 
GWASs can be applied to other populations and different diseases, 
especially in cases in which population structure or non-random samples 
occur, to efficiently detect significant genetic loci in association with 
complex diseases. 

4.1. Heritability 

One of the objectives of machine learning can be early-stage diag-
nosis and predictions that can be used to discover heritability from ge-
netic data [56]. GWASs have focused mainly on additive genetic effects, 
but the importance of non-additive effects in GWASs and genetic pre-
dictions have also been investigated. Increasing the accuracy of genetic 
studies and reducing bias are two benefits of accounting for non-additive 
genetic effects [57]. For example, dominance signals in association with 
milk yield have been identified near a candidate gene for milk produc-
tion, PUNX2, in mice by using GWASs and population-based studies 
[58]. In humans, by using likelihood-based GWAS methods, the heri-
tability or degree of passage of PD from parent to offspring has been 
compared via an additive genetic factor used as a coefficient in the 
likelihood formula. Additionally, dominant and recessive genetic factors 
have been compared between populations using likelihood-based ma-
chine learning GWAS approaches to determine the heritability of PD in 
specific populations [55]. As indicated in Fig. 2, similar methodologies 
for GWASs can be applied for different diseases and to compare heri-
tability between populations. 

5. Retrospective association analysis 

In genetic association studies with a sampling design ignoring vari-
able components, population structure, non-genetic effects, gene- 
environment interactions, epistasis and phenotype-based ascertain-
ment can reduce statistical power, leading to type 1 errors and pheno-
type model misspecification. For example, many genetic variants have 
small effects on the polygenicity of a complex trait, and pleiotropy and 
multiple traits are affected by the same genetic variants, as shown in 
GWAS results. On the other hand, an active gene-environment correla-
tion means that based on traits that are genetically influenced, in-
dividuals choose their environments. Therefore, pleiotropy can be 
environmentally mediated when a specific trait is influenced by genetics 

and then affects other traits, and it can predispose individuals to 
particular environments [59]. In such cases and to account for the 
mentioned conditions and covariates, many methods for quantitative 
trait analysis based on the standard LMM have recently been developed. 
Covariates play an important role in the association analysis of binary 
traits, and the LMM for binary traits is not a specified model, which can 
result in low performance. Other approaches that can be used when 
non-random ascertainment is common are prospective and retrospective 
studies. A retrospective study usually examines factors that may affect 
the study outcome by looking forward. In contrast, a prospective study 
tends to examine subjects for a period of time to track disease devel-
opment [40,60]. When modelling genotype distribution based on 
covariates and the phenotype, retrospective association analysis can be 
applied for phenotype model misspecification [60]. However, because 
of the unknown trait model and strong effects of ascertainment, it is 
important to note that the sensitivity of retrospective association anal-
ysis to phenotype model misspecification is lower than that of pro-
spective association analysis due to covariate-based ascertainment [40]. 

Common goals of retrospective binary-trait association mapping 
include increasing robustness to phenotype model misspecification, 
such as ascertainment, modelling the phenotype as binary with an 
appropriate variance and mean, achieving fast and accurate computa-
tion, and making appropriate corrections for various types of sample 
structures and related covariates. A retrospective binary trait association 
testing approach based on a mixed-effects quasi-likelihood framework, 
which includes great variability in fixed and random effects, called the 
case-control retrospective association test (CARAT), was proposed by 
Jiang et al. [40] and applied in a genome-wide analysis of Crohn’s 
disease. The results revealed genetic regions with multiple independent 
association signals with Crohn’s disease that may be used to identify risk 
factors. Another retrospective binary-trait association mapping method 
that helps increase power is called CERAMIC, which has been used to 
account for partially missing data [61]. 

The equation-based longitudinal binary-trait retrospective associa-
tion test (LBRAT) has been proposed for genetic association studies of 
longitudinal binary phenotypes, and the retrospective generalized linear 
mixed model-based association test (RGMMAT) approach was devel-
oped as a retrospective scoring approach. Both methods have been 
applied for GWASs of cocaine use in a longitudinal cohort, whereby 
LBRAT detected loci with a significant association with cocaine use and 
was able to provide new insight into the genetic architecture [62]. 
Overall, the results from retrospective association tests can be applied to 
further develop such approaches and apply them to different binary 

Fig. 2. Heritability from GWASs. Additive genetic factors can be applied in GWASs to estimate the level of heritability for a specific phenotype. In a case in which a 
trait has been found to be heritable in a specific population, dominant and recessive genetic factors can be used to infer whether inheritance from one or both parents 
is needed for the phenotype to be acquired by offspring. 

Z. Mortezaei and M. Tavallaei                                                                                                                                                                                                               



Informatics in Medicine Unlocked 24 (2021) 100586

6

traits. In general, genotyping costs and increasing capacity for large 
dataset analysis have motivated researchers to examine tissue-specific 
signals. 

6. Considering tissue-specific signals 

As the environment and multiple genetic factors play important roles 
in the aetiology of complex disorders, to genetically study complex 
diseases, germline and non-germline variants are crucial and need to be 
considered. Non-germline genetic mutations spontaneously occurring in 
somatic cells during a person’s lifetime are called somatic mutations. 
Some of these mutations can alter important cellular functions, and 
progressive accumulation of this type of mutation can cause complex 
diseases such as cancer [63]. In fact, somatic mutations have been 
studied most extensively in relation to cancer, but they can also cause 
neurodegenerative disease (ND) when they influence brain development 
at a different time point in life or at the pre-natal stage. For example, PD 
can be a result of somatic mutations in PARK2, SNCA, and the gene 
encoding Parkin [64]. 

In studies on somatic mutation burden, the number of somatic mu-
tations per donor can be used to perform GWASs. Under a normal so-
matic mutation burden, the first GWAS performed by Ref. [65] 
identified approximately 20 sites in association with the somatic mu-
tation burden and 2 sites with post-transcriptional modification, and cell 
proliferation may be promoted in a tissue-specific manner by the so-
matic mutations identified in that study; the study also identified some 
candidate genes with probable roles in initiating tumorigenesis. Such 
analyses have been performed before detecting the cancer phenotype 
when tissue-specific mutations in actively expressed genes have been 
identified. 

At the post-transcriptional modification level, mitochondrial poly-
morphism information can be used to perform GWASs. GWASs of 
mitochondrial tRNA can be carried out to validate the somatic mutation 
call set, which may include signals from somatic mutations or RNA 
editing. Additionally, GWASs of mitochondrial tRNA can be employed 
for post-transcriptional modification analysis. Tumorigenesis initiation 
varies among tissues of the body, and this fact needs to be considered 
when assessing GWAS results. As the results of such an analysis can 
identify new oncogene or tumour suppressor candidates, GWASs can 
identify tRNA and search for somatic mutations as organismal-level 
variants. By detecting tumorigenesis mechanisms or novel oncogenes, 
the results of such analysis can be used for disease detection and healthy 
tissue differentiation [65]. 

Transcriptome studies have been developed to assay genotypes and 
expression levels for a large number of individuals [66–68]. A 
comprehensive cross-tissue survey called the genotype-tissue expression 
project (GTEX) has collected DNA and RNA sequence data from multiple 
tissue samples of approximately 1000 individuals to examine genetic 
variations at the transcript level [69,70]. To estimate phenotypic vari-
ations, the mediating effects of gene expression levels can also be tested 
using a gene-level association approach called PrediXcan, which was 
developed to shed light on the biology of complex diseases and to 
integrate knowledge from transcriptome studies. This is because most 
trait associations are tissue specific [71]. Similar to PrediXcan, 
transcriptome-wide association studies (TWASs) [72] and summary 
Mendelian randomization (SMR) analyses [73] may be used to estimate 
associations between phenotypes and gene expression levels. The only 
differences between the TWAS and PrediXcan approaches are the 
implementation and prediction model used. In some cases, associations 
between a specific trait and unexpected tissues have been detected; to 
discover their mechanisms, agnostic scanning of a tissue set is required 
[74]. 

Five types of omics data used for molecular-type GWASs of Crohn’s 
disease were collected in one study by Pei et al. [75] to investigate tis-
sues relevant to the disease and then conduct TWASs on those tissues. 
Tissue-specific enrichment analysis (TSEA) with the R package deTS was 

utilized to collect tissues in which GWAS-detected genes were expressed. 
In that study, the MetaXcan method was used for the TWAS and to es-
timate expression levels that were genetically regulated, and the results 
revealed the three tissues most related to Crohn’s disease. 

7. Rare variant detection 

SNP genetic markers identified by GWASs and showing significant 
associations with complex traits are common variants with an MAF ≥5% 
[76]. However, some evidence indicates that rare variants represent 
almost 95% of genetic variants associated with complex traits [77]. Rare 
variants are substantially associated with disease susceptibility; there-
fore, interactions among SNPs using multi-locus associations have some 
benefits in the identification of high-risk proportions of rare variants 
[78]. Most methods for rare variant detection are classified as kernel 
association tests or burden association tests [79–81]. One of the kernel 
association methods that can be applied to detect rare variants is the 
sequence kernel association test (SKAT) [82]. Family-based SKAT 
(FamSKAT) [83] may also be used to test for associations. For related 
samples, burden tests have higher power than FamSKAT due to the 
causal effects of most genetic variants and the direction of the effects 
[25]. 

Other methods originally used for association tests of rare variants on 
unrelated samples have been extended to related samples. For example, 
the minimum p-value optimized nuisance parameter score test extended 
to relatives (MONSTER) method developed by Jiang and McPeek [84] 
comprises a combination of features from FamSKAT, and the burden test 
and has higher power than each. The pedigree disequilibrium test (PDT) 
[25] is a family-based association test that considers discordant sibships 
and nuclear families in each pedigree and can be phenotypically infor-
mative. PDT is a robust method for identifying rare variants, but its 
results for rare variant markers should be considered carefully. 

Because rare variants are abundant in the genome but generally do 
not correlate with each other, a stringent threshold is required to detect 
these variants [85]. Such restrictions lead to power loss in the detection 
of rare variants, which may be mitigated by using single-variant tests 
when rare variants have large effect sizes and the sample size is very 
large [86]. Region-based analysis can be used for rare variant associa-
tion studies. This kind of study identifies the joint association of genetic 
regions with phenotypic traits. Region-based methods include variance 
component tests [87], omnibus tests [79] and others [88–91]. Another 
region-based variant detection method, called the non-threshold rare 
(NTR) method, accounts for effect directions and does not use a 
threshold [92]. PC analysis, a pedigree-based kinship matrix or a genetic 
relatedness matrix can be used to address population stratification in 
rare variant association studies. The estimation of PCs and the genetic 
relatedness matrix using rare variants can be unstable because of the low 
MAF [93]. Regardless, further methodological developments are 
required to resolve this issue of population structure in rare-variant 
association studies. 

Using population-based sequencing data can increase the resolution 
of microarray-based GWASs in cases where variants are not genotyped 
directly [94]. Single-marker analyses have essentially no power to detect 
rare variants in sequencing data, and joint consideration of all rare 
variants within a genetic region can be used instead. For sequencing 
data and dealing with rare variants, PDT can be implemented using 
collapsing methods [95,96]. In an analysis of sequence data, it is 
important to select and group variables into a unit and determine a 
proper region. One strategy is to select genes; another is to construct 
regions based on the number of variants or sliding windows on a 
particular chromosome [97]. 

In contrast to GWASs, methods used for rare variant sequencing 
studies do not include a significance threshold at the genome scale 
because of sequencing platforms, variant aggregation, ancestry, sample 
sizes and coverage depth. Based on different assumptions, the threshold 
range is from 1 × 10− 9 to 3.75 × 10− 7 for a single-variant test [98–100]. 

Z. Mortezaei and M. Tavallaei                                                                                                                                                                                                               



Informatics in Medicine Unlocked 24 (2021) 100586

7

Because of the number of genes in the genome and the corresponding 
Bonferroni correction, gene-based tests performed at the genome scale 
can have a 2.5 × 10− 6 threshold [101]. However, for this threshold, 
individual gene correlations are not considered, representing one of the 
limitations of this approach [102]. In rare variant analysis, the appro-
priateness of the significance threshold cannot be properly assessed, and 
how to handle multiple testing for data generated via high-throughput 
sequencing remains an open question. Finally, to clearly present the 
reviewed GWAS methodologies, the methods are summarized in 
Table 2. 

8. Discussion 

To fill gaps in data pre-processing and GWAS methodologies, novel 
techniques have been reviewed, and to the best of our knowledge, this is 
the first review article covering such important issues. For example, 
recent developments in HWE assessment can consider both males and 
females and distinguish autosomes and X chromosomes. In addition, a 
cost-effective GBS method has been developed to identify genetic vari-
ants via the GWAS approach. Furthermore, machine learning methods 
have the potential to discover hidden patterns within genetic informa-
tion that can help reveal disease pathogenesis. Although typical GWASs 
examine individual SNPs and test for their associations with a phenotype 
of interest and ignore other SNPs, multi-locus association techniques 
have been reviewed that were recently developed to assess the joint 
effects of multiple genetic variants on genes, pathways, and traits. 
Despite the methods developed to prepare data and perform GWASs, 
genotyping costs and increasing capacity for large dataset analysis have 
recently motivated researchers to examine tissue-specific signals. 
Additionally, recent developments in retrospective association analysis 
may be employed for phenotype model misspecification based on 
covariates and the phenotype. On the other hand, based on the GWAS 
results, one way to increase the power of association analysis and the 
marginal effect of the true locus is genetic enrichment, which consists of 
selecting special characteristics of the phenotype. 

9. Conclusions 

In conclusion, recent developments in GWAS data pre-processing 
and methodologies, which are reviewed in this article, can overcome 
most of the current challenges in this field and help address future 
challenges. These methods can be applied to generate more robust 
GWAS results to discover heritability from genetic data when factors 
such as non-random sampling or population structure occur. It was 
concluded that in some cases, associations between a specific trait and 
unexpected tissues have been detected, and agnostic scanning of a tissue 
set is required to discover their mechanisms. In addition, for the 
detection of rare variants from association studies, single-marker anal-
ysis has essentially no power, and joint consideration of all rare variants 
in a genetic region can be used instead. In summary, recent de-
velopments and novel directions in data pre-processing and the appli-
cation of GWASs have made them more cost-effective and allowed for 
more accurate results. 
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