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Abstract

Following the outbreaks of SARS-CoV in 
2002 and MERS-CoV in 2012, the COVID-19 
pandemic caused by the SARS-CoV-2 virus 
has become an increasing threat to human 
health around the world. Numerous studies 
have shown that SARS-CoV-2 appears similar 

to the SARS-CoV as it uses angiotensin con-
verting enzyme 2 (ACE2) as a receptor to gain 
entry into cells. The main aims of this scoping 
review were to identify the primary hosts of 
coronaviruses, the relationship between the 
receptor binding domain of coronaviruses and 
ACE2, the organ specificity of ACE2 expres-
sion compared with clinical manifestations of 
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the disease, and to determine if this informa-
tion can be used in the development of novel 
treatment approaches for the COVID-19 
pandemic.

Keywords

SARS-CoV · SARS-CoV-like · SARS-CoV-2 
· COVID-19 · Angiotensin converting enzyme 
2 · ACE2 · Spike protein · Receiver connec-
tion range · Bat-SARS-CoV

5.1  Introduction

Nidovirales encompasses three viral families 
known as Coronaviridae, Arteriviridae, and 
Roniviridae. Although these have common 
genomic characteristics and use the same strat-
egy for replication inside hosts, they differ in 
morphology. The main pathogenic forms to 
humans involve two genera known as coronavi-
rus and torovirus. Coronaviruses are spherical 
enveloped viruses with a diameter of 100–120 nm 
and contain a single-core RNA genome with pos-
itive polarity. They gained the “Corona” nomen-
clature due to their spike proteins having a similar 
appearance to a crown in electron micrographs 
(Fig.  5.1). These viruses also contain signifi-
cantly more RNA than most other viruses at 
27–32 kilobytes in length. The fast multiplicity 
of coronaviruses confers their high recombina-

tion capacity [1]. This makes them highly infec-
tious in avian and mammalian species.

Based on genomic sequences, coronaviruses 
can be divided into four groups known as, alpha 
(HCoV-229E, HCoV-NL63), beta (HCoV-OC43, 
HCoV-HKU1, MHV, SARS-COV, MERS-COV), 
gamma (IBV), and delta (pdCoV) [2–4]. The 
alpha and beta forms are infective in mammals, 
the gamma forms appear specific for birds, and 
the delta form is less defined. The Severe Acute 
Respiratory Syndrome epidemic of November 
2002 to July 2003 was caused by a beta- 
coronavirus (SARS-CoV). This first erupted in 
the Guangdong province of China in November 
2002 and spread to approximately 30 countries or 
territories, such as Hong Kong, Taiwan, Canada, 
Singapore, Vietnam, USA, and the Philippines 
[5]. Within 9 months, no new cases were reported 
but a total of 8098 people had been infected and, 
of these, 774 had died. Thus, the death rate of 
SARS-CoV was almost 10% of the infected pop-
ulation. An eruption of another beta-coronavirus 
known as Middle East Respiratory Syndrome 
(MERS-Cov) began in September 2012 with the 
majority of cases occurring in Saudi Arabia and 
some spreading to other countries, such as United 
Arab Emirates, Jordan, Qatar, and South Korea 
[6].

Late in 2019, a novel coronavirus erupted in 
the city of Wuhan of the Hui province of China. 
This virus was named SARS-CoV-2 and the 
World Health Organization (WHO) named the 
disease COVID-19 (for coronavirus disease 
2019) [7, 8]. The recurrence and fulminant 
spreading of SARS-CoV-2 indicated that it was a 
potential threat to health around the world. The 
genome of SARS-CoV-2 is more similar to other 
beta-coronaviruses such as those from bats, as 
well as SARS-CoV and MERS-CoV. Early mani-
festations of the disease are fever, fatigue, dry 
coughing, myalgia, and dyspnea. Some patients 
may report headache, vertigo, stomach ache, 
diarrhea, nausea, and vomiting. In addition, some 
cases may progressively develop respiratory dis-
tress leading to alveolar injury and death [9].

The first step that occurs during a viral infec-
tion relies on the ability of the virus to enter the 
cells of the host via recognition and attachment to Fig. 5.1 Electron micrograph of SARS-CoV

A. Shojaee et al.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98



55

a specific receptor [10]. Many studies have 
reported that the SARS-CoV receptor is angio-
tensin converting enzyme 2 (ACE2) (Fig.  5.2) 
[11, 12]. As the pandemic progressed, more stud-
ies were carried out on this topic and these con-
firmed that the novel coronavirus also uses ACE2 
to gain entry into host cells [13–16]. ACE2 is 
homologous to ACE that regulates blood pres-
sure, fluid and electrolyte balance, and systemic 
vascular resistance [17]. In this pathway, renin 
converts angiotensinogen to angiotensin 1 (AGT- 
I) and ACE converts AGT-I to AGT-II.  In turn, 
AGT-II acts on the adrenal gland, causing it to 
release aldosterone. ACE2 converts AGT-I to 
AGT (1–9) and AGT-II to AGT (1–7) which bind 
to the mitochondrial assembly receptor (MAS), 
leading to antagonism of a wide variety of the 
effects of AGT-II.  In general, ACE2 acts as a 
counter- regulatory enzyme that decreases the 
local concentration of AGT-II [18].

There are also two types of ACE2 with respect 
to functional characteristics. ACE2 contains a 
trans-membrane domain that connects its extra-
cellular domain, which can act as a receptor for 
coronavirus spike proteins [11–16]. ACE2 is 
expressed in many cell types, especially pulmo-
nary pneumocytes, myocardium cells, cholangio-
cytes, proximal tubules of the kidney, surface 
enterocytes of the intestines, cholecyst cells, lym-
phatic endothelial cells, epithelial cells of the 
bladder, corporeal cytotrophoblasts, and syncy-
tiotrophoblasts, and it is also found in the eyes, 
epithelial cells of the mouth cavity, monocytes 

and macrophages, parietal cells of the stomach, 
the external layer of the adrenal glands, pancre-
atic islet cells, acidophilic cells of parathyroid 
glands, epithelial cells of sweat glands, and aci-
dophilic cells of the pituitary [17, 18].

The spike proteins of SARS-CoV-2 provide 
the mechanism that allows it to enter cells in a 
manner similar to that used by the SARS corona-
virus [13–16]. The spike protein contains two 
domains known as S1 and S2, and the receptor 
binding domain (RBD) is the main functional 
determinant within the S1 region that plays a cru-
cial role in binding to ACE2 [19]. Species like 
civets, horseshoe bats, ferrets, golden Syrian 
hamsters, rabbits, turtles, monkeys, cows, sheep, 
pigs, weasels, and raccoon dogs are potential 
hosts for SARS-CoV-2 due to their inherent 
ACE2 receptors [20]. Studies of the RBD amino 
acid sequences of coronaviruses and the ACE2 
attachment site have led to some information on 
severity of infections as well as the identity of 
potential intermediate hosts [11–16, 19, 20]. In 
general, a more comprehensive understanding of 
ACE2 expression regarding cells, tissues, organs 
and host species, as well as on the evolution and 
adaptability of the coronavirus spike proteins, 
may aid our development of effective 
treatments.

With this in mind, the aims of this review were 
to: 1) identify the primary reservoirs and interme-
diate hosts of coronaviruses; 2) explore the inter-
action between the coronavirus spike proteins 
and ACE2; 3) determine if any relationship exists 

ACE2

SARS-CoVFig. 5.2 Scheme 
showing the interaction 
between SARS-CoV and 
ACE2 to gain entry into 
host cells
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between ACE2 tissue expression and the clinical 
manifestations of coronavirus infection; and 4) 
use this information to provide potential insights 
into novel treatment strategies against 
COVID-19.

5.2  Methods

This scoping review focused on the probable 
relationship between the novel COVID-19 coro-
navirus, SARS-CoV-2, and the ACE2 receptor. 
The selection process followed the Preferred 
Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) criteria (Fig. 5.3).

5.2.1  Data Sources and Research 
Strategies

All published and unpublished (gray literature) 
works up to the 21st of March 2020 were inves-
tigated. At first, suitable and related keywords 
were defined by the research team then the fields 

of title, abstract, keywords, topic, title/abstract 
were examined using the English language data-
bases of Scopus, Web of science, ProQuest, 
Embase, and PubMed. Medical Subject 
Headings (MeSH) databases were also assessed 
and related synonyms were applied to increase 
the comprehensiveness of the study and mini-
mize attrition. In addition unique Boolean syn-
tax and operators related to each database were 
applied to extend the scope of the search 
(Table 5.1).

5.2.2  Study Selection

In the first stage of the search, all English- 
language studies were tracked considering title 
and abstracts, and papers addressing the key 
points were included. This included studies 
reporting on angiotensin converting enzyme 2 
(ACE2) or SARS-like coronavirus in any hosts, 
studies covering any relation between the spike 
protein residues of coronaviruses and amino acid 
sequences of ACE2, as well as studies related to 
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(n=207

Additional records 
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Records after duplicates removed: 
(n=113

Records screened: (n=94) Records excluded: (n=2)

Full text articles assessed 
for eligibility: (n=92)

Full text articles excluded: 
(n=14)

Studies included in the 
review: (n=78)

Fig. 5.3 Scheme showing the study selection procedure
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expression of ACE2  in cells, tissues, and body 
organs. The refining process was done by all the 
research team members to increase accuracy. The 
inclusion and exclusion criteria are summarized 
in Table 5.2.

5.2.3  Listing and Exploring Data 
and Analyzing the Studies

The format for listing data followed the Joanna 
Briggs Institute (JBI) approach as an accepted 
methodology for scoping reviews. The research 
team decided how to search questions. After 
discussions and investigations, the following 
topics were explored: 1) the country (or coun-
tries) in which the study was carried out, 2) 
study type, 3) the aims, and 4) the main find-
ings. To increase accuracy, two external review-

ers checked and explored the results separately. 
General conformity was obtained by discus-
sions in cases of disagreement between the 
team members or between the team members 
and external reviewers. Kendall’s coefficient of 
concordance was acceptable between the 
research team (r  =  0.95; p  <  0.0001) and 
between the team and reviewers (r  =  0.93; 
p < 0.0001).

5.3  Results

5.3.1  Search Outcomes

The PRISMA flow chart was used to illustrate the 
study selection process and results (Fig.  5.3). 
Across the five databases a total of 207 studies 
were retrieved. After removal of duplicates, 94 
titles and abstracts were screened for relevance 
and two were removed. The remaining 92 full- 
text articles were screened for eligibility and 78 
articles were considered directly related to the 
research questions and included for the 
synthesis.

5.3.2  Article Information

Among the 78 studies, 73 used laboratory meth-
ods [22–31, 33–37, 38–42, 44–47, 48, 49, 50, 
52–97], 2 were reviews [21, 98], 1 was a title of 
book [51], 1 was correspondence [99], and 1 was 
a perspective [32].

The included studies originated from different 
countries and, based on frequencies, 26 were 
from China [25, 27, 30, 31, 33, 39–42, 44–46, 53, 
56, 57, 61, 62, 65, 73, 74, 76, 77, 82, 86, 94, 97], 
18 from the USA [21, 22, 24, 26, 28, 36, 37, 38, 
47, 49, 55, 58, 68, 69, 72, 79, 84, 99], 15 were 
carried out as multinational collaboration [29, 32, 
35, 50, 51, 54, 59, 66, 70, 75, 88, 90–92, 98], 5 
were from Japan [34, 48, 64, 78, 87], 4 from 
Germany [38, 71, 85, 96], 3 from Poland [52, 83, 
89], 3 were from Taiwan [63, 66, 67], 2 Holland 
[23, 60], 1 Israel [81], and 1 from South Africa 
and Tunisia [80].

Table 5.1 Search terms and databases

Scopus: 74 TITLE (“angiotensin converting enzyme 
2” OR ace2) AND TITLE (“SARS CoV” OR 
coronavirus OR covid OR “SARSr CoV” OR “MERS 
CoV” OR ncov)
PubMed: 72 (“angiotensin converting enzyme 2” 
[title] OR ace2 “angiotensin converting enzyme 2” 
[title] OR ace2 [title]) AND (“SARS CoV” [title] OR 
coronavirus [title] OR covid [title] OR “SARSr CoV” 
[title] OR “MERS CoV” [title] OR ncov [title])
ProQuest: 171 (“angiotensin converting enzyme 2” 
OR ace2) AND ti (“SARS CoV” OR coronavirus OR 
covid OR “SARSr CoV” OR “MERS CoV” OR ncov)
Web of science: 65 (“angiotensin converting enzyme 
2” OR ace2) AND TITLE: (“SARS CoV” OR 
coronavirus OR covid OR “SARSr CoV” OR “MERS 
CoV” OR ncov)
EMBASE: 79 (“angiotensin converting enzyme 2”:Ti 
OR ace2:Ti) AND (“sars cov”:Ti OR coronavirus:Ti 
OR covid:Ti OR “sarsr cov’:Ti OR “mers cov”:Ti OR 
ncov:Ti)

Table 5.2 Inclusion and exclusion criteria for selected 
articles

Inclusion criteria Exclusion criteria
Published in English Not written in English
Published between 
January 2003 and March 
2020

Literature that did not 
include empirical data 
(letters, editorials, news, 
etc.)

Focus on relationship 
between ACE2 and 
SARS-coronaviruses

Articles found not be 
relevant
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5.3.3  Narrative Summary of Studies

The main topics that the 78 studies focused on 
were: 1) the primary or intermediate reservoirs of 
coronaviruses; 2) the relationship of spike protein 
of the viruses and ACE2 as the related receptor; 
3) the expression of ACE2  in various body 
organs; and 4) the recommended medical strate-
gies based on the relationship of the spike protein 
and ACE2.

5.3.4  Studies Addressing 
the Primary Reservoir 
and Intermediate Hosts 
of Coronaviruses

Fifteen relevant studies are summarized below:
 1. Li et al. (2006) addressed the following ques-

tions [98]:
 (a) If bats are a reservoir of SARS-CoV-like 

viruses, when and in which species did these 
viruses acquire a spike protein capable of 
using palm civet and human ACE2?

 (b) Are changes in the spike protein which 
enhanced human-to-human transmission a 
likely consequence of incubation in palm 
civets and other animals or is it a unique 
event not likely to recur?

 (c) Did SARS-CoV gain the use of ACE2 
through recombination and, if so, with what 
virus?

 (d) What changes in other viral proteins were 
necessary for SARS-CoV to infect humans 
efficiently?

This paper described the emergence of dangerous 
variants of common pathogens including 
HCoVNL63 and animal equivalents and dis-
cussed coping strategies of viruses such as 
recombination.
 2. Heller et  al. reported that both mink and 

palm civet had 83/87 amino acid identity/
similarity with human ACE2 [22]. This study 
suggested mink as a potential reservoir of 
SARS coronavirus in North America and 
established it as a suitable animal model to 
study this virus.

 3. Zamoto et al. showed that ferret ACE2 acts 
as a SARS-CoV receptor with similar effi-

ciency as human ACE2 and with greater effi-
ciency than mouse ACE2 [48].

 4. In 2007, a study by Fukushi et  al. showed 
that SARS-CoV needs to bind via the RBD 
in the spike protein to ACE2 [78].

 5. Chen et  al. reported that, in comparison to 
human ACE2, 38 nonsynonymous changes 
exist in Chinese rhesus-ACE2, but this is just 
as effective as the human homolog in sup-
porting viral entry [77]. The study also high-
lighted a natural mutation of tyrosine to 
asparagine at position 217 that can lead to 
downregulation of human-ACE2 and reduce 
viral entry.

 6. Guo et al. reported that the number of amino 
acid differences between human-ACE2 and 
cat, civet, mouse, and rat ACE2 was 3, 8, 9, 
and 11, respectively [76]. Since there is no 
difference in the binding ability of cat ACE2 
to the SARS-CoV spike protein, the possibil-
ity of zoonotic transmission of SARS-CoV 
from animals to humans is supported and, of 
the species tested, the cat ACE2 sequence 
was evolutionarily the closest.

 7. Xu et al. stated there are six amino acid dif-
ferences in raccoon dog ACE2 compared 
with human ACE2 and concluded that the 
raccoon dog may serve as a critical interme-
diate host for SARS-CoV and may have 
played a key role in SARS-CoV outbreaks 
[25].

 8. In 2010, Hou et  al. pointed out that two bat 
species, Myotis daubentoni and Rhinolophus 
sinicus, are likely to be susceptible to SARS- 
CoV and may be candidates as the natural host 
of the SARS-CoV progenitor or virus [75].

 9. The study run by Demogines et al. reported 
that ACE2 utilization preceded the emer-
gence of SARS-CoV-like viruses from bats 
[47]. Their results were consistent with a 
model in which an ACE2-utilizing bat coro-
navirus infected civets and/or other interme-
diate hosts, or possibly even humans directly.

 10. Li et al. noted that human, civet, mouse, cat, 
golden Syrian hamster, and horseshoe bat 
support infection of SARS-CoV [45]. 
Therefore, comprehensive surveillance of 
these animals is suggested when SARS or 
SARS- like CoVs reemerge in the human 
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population in the future. This study also 
reported that rabbits and horseshoe bats are 
animal carriers of SARS-CoV.

 11. Ge et  al. identified two coronaviruses from 
Chinese horseshoe bats, RsSHC014 and 
Rs3367, which had the highest similarity to 
SARS-CoV, compared to other bat coronavi-
ruses [29]. The similarity was highest in the 
RBD of the spike protein, supporting the 
case that these bat species as natural reser-
voirs of SARS-CoV.

 12. Recently Cao et  al. found that East Asian 
populations have higher allele frequencies in 
expression of quantitative trait loci variants 
associated with higher ACE2 expression in 
tissues [74]. This may indicate different sus-
ceptibilities or responses to SARS-CoV-2 
infection in different populations.

 13. Li et  al. emphasized potential interspecies 
transmission of SARS-CoV-2 and the need 
for further surveillance in animal popula-
tions [46]. They found that the ACE2 amino 
acid positions 30–41, 82–84, and 353–357 
are important in the interaction with SARS- 
CoV and amino acids 31, 35, 38, 82, and 353 
are critical. As humans and nonhuman pri-
mates (gibbon, monkey, macaque, orang-
utan, and chimpanzee) showed identical 
sequences over these regions, this makes 
them potential hosts of SARS-CoV-2.

 14. Another study by Liu et  al. confirmed that 
other than pangolins and snakes, turtles are 
also potential intermediate hosts for trans-
mission of SARS-CoV-2 to humans [73].

5.3.5  Studies Addressing 
the Interaction between 
Coronavirus Spike Proteins 
and ACE2

We found 27 studies which addressed this point:
 1. Kuhn et  al. reported ACE as a receptor for 

coronaviruses [21]. The paper stated that 
studying the receptor in detail is needed to 
progress in development of anti-viral drugs, 
vaccines, and animal models to survey 
pathogenesis of SARS-CoV.  He concluded 

that the major questions that still need to be 
answered are the following: 1) Is ACE2 the 
only cellular factor permitting SARS-CoV 
cell entry or are co-receptors involved? 2) 
Does the inflammatory response to SARS- 
CoV infection lead to upregulation of ACE2 
expression in lung tissue?

 2. Hofmann et al. pointed out the central role of 
ACE2 in SARS-CoV infection and a minor 
contribution of the ACE2 cytoplasmic 
domain to receptor function [71].

 3. Prabakaran et  al. identified a deep channel 
on the top of the ACE2 molecule that con-
tains the catalytic site and negatively charged 
ridges surrounding the channel that may 
 provide a possible binding site for the posi-
tively charged receptor-binding domain of 
the spike protein [72]. He also noticed hydro-
phobic patches around the charges that could 
contribute to binding and the lack of carbo-
hydrates at the top of the molecule could 
enable high-affinity binding.

 4. Wong et  al. stated that a 193-amino acid 
fragment of the spike protein (residues 318–
510) bound to ACE2 more efficiently than 
did the full S1 domain (residues 12–672) 
[49]. In addition, smaller spike protein frag-
ments, expressing residues 327–510 or 318–
490, did not bind ACE2.

 5. In their study, Zhang et  al. reported that a 
SARS-CoV spike protein S1 residue (argi-
nine 453) and an ACE2 residue (lysine 341) 
appear to be involved in the binding of 
SARS-CoV to ACE2 [50].

 6. Li et al. carried out a study which found that 
the lower affinity of three SARS-CoV spike 
proteins from the less severe 2003–2004 
outbreak could be enhanced by altering spe-
cific residues within the spike protein-bind-
ing site of human ACE2 to those of civet 
ACE2, or by altering spike protein residues 
479 and 487 to those that were present in the 
more severe 2002–2003 outbreak. This 
study suggested that the reason for the low 
prevalence and intensity of SARS 2003–
2004 outbreak was due to lower affinity of 
the spike protein of this coronavirus to bind 
ACE2 [93].
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 7. Lambert et al. showed that ADAM metallo-
peptidase domain 17 (ADAM17) is the pro-
tease responsible for ACE2 shedding [92].

 8. Huang et al. reported on two coronaviruses 
(SARS-CoV, HCoV-NL63) that both utilize 
the ACE2 receptor, but enter cells through 
distinct mechanisms [24]. Specifically, only 
SARS-CoV utilized the enzymatic activity 
of the cysteine protease cathepsin L to infect 
ACE2-expressing cells.

 9. Smith et al. reported that although the spike 
glycoprotein of HCoV-NL63 shares only 
25% amino acid sequence identity with that 
of SARS-CoV, both viruses used ACE2 as a 
receptor [52]. This suggested that both 
viruses evolved separately to bind to the 
same receptor.

 10. Pöhlmann et  al. described how the ACE2 
receptor was used for viral entry by 
CoV- NL63 despite little homology between 
this coronavirus and SARS-CoV [51].

 11. The study run by Inoue et al. concluded that 
SARS-CoV mainly utilizes the clathrin- 
mediated endocytosis pathway for its entry 
into target cells and the cytoplasmic tail of 
ACE2 is not required for the penetration of 
SARS-CoV into cells [34].

 12. The study of Li et  al. noted that the spike 
proteins of SARS-CoV and HCoV-NL63 
bind overlapping regions of ACE2 that 
include a critical loop between beta-strands 
IV and V [91]. In addition, changes to ACE2 
residue 354, at the boundary of the SARS- 
CoV binding site, markedly inhibited utiliza-
tion by HCoV-NL63 but not by SARS-CoV 
spike proteins.

 13. Glende et al. in their study highlighted that 
cholesterol-rich micro-domains provide a 
platform facilitating efficient interaction of 
the SARS-CoV spike protein with ACE2 
[90].

 14. Mathewson et  al. showed that the NL63 
coronavirus spike protein has a weaker inter-
action with ACE-2 than the SARS-CoV 
spike protein [89].

 15. Lin et al. reported that the NL63 coronavirus 
receptor binding domain binds to human 
ACE2 more efficiently than its full-length 

counterpart, with a binding efficiency com-
parable to the S1 or receptor binding domain 
of SARS-CoV [88].

 16. Yoshikawa et  al. reported that both AC70 
and AC22 transgenic mice expressing the 
human ACE2 receptor were permissive to 
SARS-CoV infection, and caused elevated 
secretion of many inflammatory mediators 
within the lungs and brains, although infec-
tion was more intense with higher immuno-
suppression in AC70 than in AC22 mice, 
especially in the brain [26].

 17. Haga et  al. identified multiple ACE2- 
truncated variants that lost the SARS-CoV 
spike protein-induced shedding of ACE2 and 
TNF-α production in lung tissue [87].

 18. A study by Chen et al. showed that the viral 
spike protein led to upregulation of fibrosis- 
associated chemokine ligand 2 (CCL2) and 
production of virus-like particles, and this 
was mediated by extracellular signal- 
regulated kinase 1 and 2 (ERK1/2) and the 
activator 1 protein (AP-1) transcription fac-
tor but not by the IκBα-NF-κB signaling 
pathway [86].

 19. Glowacka et al. reported that SARS-CoV but 
not NL63 coronavirus replicated efficiently 
in ACE2-positive cells and reduced ACE2 
expression [85].

 20. The study of Wu et al. noted that binding to 
the same hot spot on human ACE2 was likely 
to be an outcome of convergent evolution by 
NL63-CoV and SARS-CoV [84].

 21. Dijkman et al. showed that decreased ACE2 
expression is dependent on the efficiency of 
NL63 coronavirus replication, and that 
NL63-CoV and SARS-CoV both affect cel-
lular ACE2 expression during infection [83].

 22. The study of Heurich et al. resulted in trans-
membrane protease serine 2 (TMPRSS2) but 
not ADAM17 protease promotion of SARS- 
CoV entry by two separate pathways: 1) 
ACE2 cleavage, which might promote viral 
uptake; and 2) SARS spike protein cleavage, 
which activates this protein for membrane 
fusion [96].

 23. Song et al. showed that the spike glycopro-
tein retains the pre-fusion trimer structure 
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after trypsin cleavage and low-pH treatment 
[82]. Also, binding with the host cell recep-
tor ACE2 promotes the release of S1 sub-
units from the S trimer and triggers the 
pre- to post-fusion conformational 
transition.

 24. Brielle et al. described the evolution of coro-
naviruses (SARS-CoV, SARS-CoV-2, and 
NL63-CoV) towards host recognition [81].

 25. Lan et  al. suggested that SARS-CoV-2 is 
similar to SARS-CoV and reported that the 
similarities in structure and sequence of 
these two coronaviruses argue for conver-
gent evolution towards improved binding to 
ACE2 [44].

 26. Othman et al. reported that the interface seg-
ment of the spike protein RBD might have 
been acquired by SARS-CoV-2 via a com-
plex evolutionary process rather than muta-
tion accumulation [80].

 27. Yan et al. showed that SARS-CoV-2 recog-
nizes an ACE2 dimer that complexes with a 
membrane protein, and drugs which disrupt 
this interaction may be effective in reducing 
infection [31].

5.3.6  Studies Investigating 
the Relationship between 
ACE2 Expression and Clinical 
Manifestations of COVID-19 
Infection

Seventeen studies addressed this topic:
 1. To and Lo found that although ACE2 is 

expressed at high levels in pneumocytes and 
surface enterocytes of the small intestine, the 
tissue responses in these two organs are dif-
ferent [27]. They also found that the pres-
ence of ACE2 is not enough for coronavirus 
infection and that other receptors or cofac-
tors may be required in some tissues.

 2. Hamming et  al. studied expression of the 
ACE2 protein on lung alveolar epithelial 
cells and enterocytes of the small intestine 
[60]. This revealed that ACE2 was present in 
arterial and venous endothelial cells, and 

arterial smooth muscle cells in all organs 
studied.

 3. Mossel et al. reported that the human colon 
epithelial line CaCo-2 was the only human 
cell type out of 13 tested that supported effi-
cient SARS-CoV replication [28].

 4. The study by Jia et  al. showed that ACE2 
was more abundantly expressed on the apical 
surface of polarized epithelia, and well- 
differentiated cells support viral entry and 
replication [37].

 5. Ren et al. showed that ACE2 is localized on 
the apical plasma membrane of polarized 
respiratory epithelial cells and mediates 
infection from the apical side of these cells 
[59].

 6. Li et al. noted that both SARS-CoV recep-
tors (ACE2 and CD209L) are expressed in 
organ/tissue-derived endothelial cells. The 
expression of the ACE2 receptor was highest 
in human lung microvascular endothelial 
cells, and expression of CD209L was higher 
in lymphatic endothelial cells [43].

 7. Tseng et  al. showed that pre-inflammatory 
mediators and viral titer were high in lung 
and brain of transgenic mice expressing 
ACE2 [58].

 8. Yang et  al. showed that SARS-CoV repli-
cated more efficiently in lungs of ACE2 
transgenic mice than in those of wild-type 
mice. Similar signs (vasculitis, degeneration, 
and necrosis) were also seen in other organs 
[57].

 9. Dong et  al. reported the mRNA of human 
ACE2 was expressed efficiently in normal 
lung tissue, but not in cartilage and cancel-
lous bone under the weight-bearing area of 
the femoral head [56].

 10. Netland et al. found that neurons are a sus-
ceptible target for SARS-CoV and that only 
the absence of host cell receptors prevents 
severe murine brain disease [55].

 11. A study by Oudit et al. focused on myocar-
dium showed that that SARS-CoV can medi-
ate inflammation and damage associated 
with downregulation of the myocardial 
ACE2 system, which may be responsible for 
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the myocardial dysfunction and adverse car-
diac outcomes in patients with SARS [54].

 12. Chai et al. showed that SARS-CoV-2 might 
directly bind to ACE2 positive cholangio-
cytes but not necessarily to hepatocytes [53].

 13. Deng et al. showed expression of ACE2 and 
TMPRSS2  in human kidney proximal 
tubules, indicating that the kidney is a poten-
tial target organ of SARS-CoV-2 infection 
[42].

 14. Ji et  al. showed that after triggering func-
tional changes in ACE2, an imbalance in the 
steady-state cytokine regulatory axis involv-
ing the renin–angiotensin system and IP-10 
leads to a cytokine storm [94].

 15. Li et  al. reported that the SARS-CoV-2 
receptor ACE2 was widely spread in specific 
cell types of the maternal–fetal interface 
[41].

 16. Lin et  al. showed high ACE2 gene expres-
sion in all subtypes of kidney proximal 
tubule cells and low expression in bladder 
epithelial cells [39].

 17. Xu et  al. reported ACE2 expression on the 
mucosa of the oral cavity and epithelial cells 
of tongue [30].

5.3.7  Studies Investigating New 
Treatment Strategies 
for COVID-19 Infection

Twenty studies regarding new treatment 
approaches are summarized below:
 1. Han et al. showed that a peptide derived from 

ACE2, which consisted of two discontinuous 
parts of ACE2 (amino acids. 22–44 and 351–
357), was a good candidate for the treatment 
of coronary heart disease [69].

 2. Li et  al. described ACE2 as a functional 
receptor for SARS-CoV and showed that a 
solution form of ACE2 rather than ACE1 
could block the spike S1 domain [36]. This 
suggested the potential use of ACE2 antibod-
ies as a treatment for SARS infection, which 
may also be applicable to COVID-19 cases.

 3. The findings of Moore et al. were in line with 
those of Li [70].

 4. Batlle also recently reported that a soluble 
recombinant form of ACE2 appeared to neu-
tralize SARS-CoV-2 in vitro [99].

 5. Hoffmann et  al. showed that SARS-CoV-2 
uses ACE2 as a receptor and TMPRSS2 for 
spike protein priming [38]. This study sup-
ported that case that TMPRSS2 inhibitors 
might be a treatment option. The study also 
showed that sera from convalescent SARS- 
CoV patients cross-neutralized viral entry 
and could therefore provide a treatment  and/
or a vaccination strategy for patients with 
COVID-19.

 6. Lei et al. generated a fusion protein contain-
ing the RBD of the SARS-CoV spike protein 
linked to the Fc portion of human IgG1 and 
found that this could be internalized into 
SARS-CoV-susceptible cells with ACE2 
[61]. This may also have some implications 
for vaccine development [61].

 7. Ho et al. also showed in their study that pep-
tides derived from the spike protein, espe-
cially the use of amino acid residues 
668–679, can compete with the ACE2- 
coronavirus interaction and prevent infection 
[67].

 8. Kuba et  al. found that recombinant spike 
IgG-Fc proteins can block coronary artery 
disease associated with SARS-CoV [35]. 
This study also introduced the idea of using 
ACE2 inhibitors as a way to reduce injury 
and pulmonary edema.

 9. Zhang et al. showed that recombinant spike 
S1 subunit proteins (amino acid residues 388 
to 496) can induce protective neutralizing 
antibodies against SARS-CoV [65].

 10. Wang et  al. also found that a SARS-CoV- 
RBD-IgG-Fc protein could bind to ACE2, 
again suggesting this as a potential vaccine 
approach [62].

 11. de Lang et  al. reported that the anti- 
inflammatory cytokines interferon-γ and 
interleukin (IL)-4 could reduce effects of 
coronary artery disease via reduced ACE2 
expression [23].

 12. He et  al. showed that infection caused by 
coronaviruses can cause pro-inflammatory 
cytokines (MCP-1 and TGF-β1, TNF-α, 
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IL-1β, IL-6) in pneumocystis and macro-
phages of the lungs and bronchi, which can 
lead to acute lung damage [68]. This sup-
ports the use of anti-inflammatory cytokines 
as a therapeutic strategy.

 13. Haga, S attributes the production of inflam-
matory cytokines, especially TNF-α, to the 
stimulation of the 2019-nCoV spike and the 
cytoplasmic tail of ACE2. This is a multifac-
eted interaction between the production of 
pre-inflammatory cytokines, protein spike 
SARS-CoV, and ACE2 [64].

 14. Yan et  al. showed that an siRNA approach 
can effectively prevent viral replication by 
targeting the ACE2 gene or viral nucleocap-
sid protein [66].

 15. Lu et al. also showed that downregulation of 
ACE2 expression using an siRNA approach 
could effectively reduce the proliferation of 
SARS-CoV [63].

 16. Wang et  al. also showed that reducing 
expression of ACE2 by siRNA, makes ACE2 
a therapeutic target [33].

 17. Wu et al. suggested four potential treatment 
options for coronavirus infections: 1) the 
use of ACE2 recombinant proteins; 2) use 
of ACE2 inhibitors such as lisinopril; 3) 
use of ACE2 blockers such as losartan; and 
the use of angiotensin (7-1) to activate the 
MAS receptor for ACE2 neutralization 
[84].

 18. Zhang et al. also provided treatment strate-
gies for COVID-19 infection based on the 
role of ACE2, which included: 1) the use of 
vaccines against the spike protein; 2) the use 
of serum protease inhibitors against 
TMPRSS2; 3) blockade of ACE2 with small 
molecules; and 4) use of the ACE2 soluble 
form that binds competitively to the SARS- 
CoV spike protein [32].

 19. Ho et al. reported on a number of small mol-
ecules that disrupted the SARS-CoV – ACE2 
interaction and could therefore be promising 
leads for development of novel treatments 
for COVID-19 disease [67].

5.4  Discussion

To the best of our knowledge, this is the first 
scoping review on the SARS-CoV-2 which aims 
to integrate the existing knowledge on the pri-
mary hosts of coronaviruses, the relationship 
between the receptor binding domain of corona-
viruses and the likely host cell receptor ACE2, 
the organ specificity of ACE2 expression com-
pared with clinical manifestations of the disease, 
and whether or not this information can be used 
for development of novel treatment approaches.

In the case of the SARS-CoV, exotic market-
place animals were probably the immediate ori-
gin of the virus [100]. These animals included 
palm civets as the likely carriers since SARS- 
CoV could be isolated from these animals. In 
addition, the infections which occurred coincided 
with the preparation and consumption of palm 
civet meat products in restaurants. SARS-CoV 
infections of other marketplace species have also 
been observed such as the cat, red fox, and bad-
ger. Although these species may be an immediate 
source of SARS-CoV infections in humans, it is 
likely that they serve as a conduit of the virus 
from another reservoir species. The most likely 
of these reservoirs includes certain bat species 
such as the horseshoe bat [100].

For SARS-CoV-2, 6 amino acids in the RBD 
of spike protein amino have been found to be 
critical for ACE2 binding and host determination 
[101]. Interestingly, 5 of these amino acids differ 
between SARS-CoV-2 and SARS-CoV which 
seems to confer a higher affinity of SARS-CoV-2 
to ACE2 in humans, cats, ferrets, and other spe-
cies. As many early cases of SARS-CoV-2 infec-
tion were linked to the Huanan market in Wuhan, 
it is likely that bats served as the primary reser-
voir given the high genomic similarity of the 
RaTG13 bat coronavirus with SARS-CoV-2. In 
addition, illegally imported Malayan pangolins 
contain coronaviruses similar to SARS-CoV-2 
especially within the RBD domain. This suggests 
that the SARS-CoV-2 spike protein was most 
likely optimized for binding to human-like ACE2 
receptors by natural selection.

5 Relationship Between COVID-19 and Angiotensin-Converting Enzyme 2: A Scoping Review

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816



64

Taken together, this study provides insights 
into the spike protein of SARS-CoV-2 in relation 
to the probable host cell receptor, ACE2, in 
COVID-19 disease. Due to the diversity of coro-
navirus species transmission and the internal and 
intergenerational diversity of these viruses, the 
reservoir and intermediate host of SARS-CoV-2 
is still not certain. However, as stated above, it is 
likely that the bat is the main animal reservoir 
and the results of a recent study are consistent 
with the pangolin being the intermediate host 
[102]. This latter study carried out molecular and 
phylogenetic analyses and showed that a pango-
lin coronavirus (pangolin-CoV-2020) is geneti-
cally related to SARS-CoV-2 and a group of bat 
coronaviruses and may therefore be natural hosts 
of betacoronaviruses. Thus, steps taken to mini-
mize human exposure of humans to such wildlife 
will be important to reduce the risks of coronavi-
ruses spreading from animals to humans.

In addition, it is still not clear if the interaction 
between ACE2 and the SARS-CoV-2 spike pro-
tein evolved separately or if they coevolved to 
permit the high infectivity of this coronavirus 
[103]. Recent studies have suggested that this 
could be due to the higher affinity of the SARS- 
CoV- 2 spike protein receptor binding domain for 
ACE2 compared with other coronaviruses, such 
as SARS-CoV [104].

Although the clinical manifestations of 
COVID-19 disease are varied, at least some of 
these appear to be due to the targeting of ACE2 in 
different tissues and organs of the body. Although 
the virus likely enters the body at the level of the 
respiratory system due to the high levels of ACE2 
expression there, the virus can spread out and 
cause damage to other vital organs and tissues 
expressing ACE2, triggering a wide spectrum of 
pathophysiological effects and symptoms, 
including digestive [105], neurological [106], 
and cardiovascular complications [107].

5.5  Conclusions and Future 
Perspectives

There is currently no proven effective treatment 
for COVID-19 disease and development of a safe 
and effective vaccine could take from 6 months to 

one and half years. However, since the virus 
gains access to the respiratory system through the 
cell surface ACE2 protein, a number of strategies 
are currently being explored to target this interac-
tion [108–112]. One incredible feature of the 
COVID-19 pandemic has been the worldwide 
efforts to develop new treatments and vaccines to 
halt its spread and to raise our awareness of the 
dangers of pandemics due to such viruses and 
other pathogens. The emergence of COVID-19 
highlights the critical importance of establishing 
a systematic coronavirus surveillance network. In 
addition, the current pandemic has instilled in all 
of us the value of setting in place a worldwide 
coronavirus surveillance network to prevent such 
events from reaching the dangerous levels that 
this one has and to manage outbreaks more effec-
tively in the future.
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