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ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible 

for widespread tick-borne zoonotic viral disease CCHF in African, 

Middle Eastern, Asian, and European countries. CCHFV can 

be spread to humans through tick bites or contact with infected 

animals or humans, and it often progresses from asymptomatic 

to severe/lethal illness, with fatality rates ranging from 10% to 

40% in humans. Today, CCHF is growing into a significant public 

health concern due to its very high prevalence, severity of the 

condition, and lack of available vaccines and specific treatments. 

Recent research has been drawn towards a more accurate study of 

CCHFV characteristics, including the structure, genetic diversity, 

mechanisms involved in pathogenesis and immunopathogenesis, and 

clinical features. In addition, the use of animal models (mouse and 

non-human primates) and advanced diagnostic tools in recent years 

has resulted in a significant advance in CCHF related studies. In this 

context, we summarized the latest findings about CCHF research, its 

health complications, animal models, current diagnosis, vaccination, 

and CCHF treatments, and therapeutic strategies. Furthermore, we 

discussed existing deficiencies and problems in CCHFV analysis, as 

well as areas that still need to yield conclusive answers. 
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1. Introduction

  Crimean-Congo hemorrhagic fever (CCHF) caused by Crimean-

Congo hemorrhagic fever virus (CCHFV) is one of the most 

severe viral illnesses in humans[1]. In 1944, an unfamiliar pathogen 

outbreak was first confirmed during the Crimean conflict, later 

referred to as a hemorrhagic fever[2]. In 1969, it was discovered 

that the pathogen causing Crimean hemorrhagic fever was similar 

to the pathogen causing a distinct disease identified in the Congo 

in 1956[3]. Therefore, these two locations lead to the name of the 

disease’s discovery. The most efficient vector of CCHFV is ticks 

of the genus Hyalomma marginatum, which are widely distributed 

across many countries of Africa, Europe (south Russia, Turkey, 

Balkan countries, and Spain), and Asia (from China and India 

to the Middle East)[3,4]. Furthermore, Hyalomma vectors have 

the ability to adapt to a wide variety of environments, which has 

resulted in their global distribution through migratory birds. Global 

distributions of CCHF are among numerous areas[5,6]. At the 

moment, Middle Eastern countries are the principal areas of CCHF 

activity. Today, Hyalomma ticks are far more prevalent or even 

epidemic in the world. A new study reveals that their geographical 

range is growing rapidly. Moreover, migratory birds possess a 

significant role in disseminating Hyalomma ticks into farther areas 

and potentially exposing human populations to CCHFV, which 

would result in approximately 10 000 to 15 000 cases of human 

infections annually[4]. Often, CCHF can cause a wide spectrum of 

asymptomatic to lethal disease in humans, and there is no cure in 

animals or a vaccine that should be approved[7]. Thus, in endemic 

areas, CCHF will create a slew of complications in diagnosis, care, 

and prevention. Currently, several research trials are being done 

on animal models that rely on the identification of viral proteins 

and pathology associated with the infection, as well as on virus 

pathology in animals that have been exposed to the virus[3,8,9]. Also, 

with the contribution of novel animal models in recent years, the 

development of vaccines and therapeutic approaches for CCHF 

is rapidly expanding[10,11]. This review discussed the recently 

published data regarding general characteristics, clinical features, 

laboratory findings, immunopathogenesis systems, and animal 
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models of CCHFV. Additionally, we showed current progress in the 

production of CCHF vaccines and clinical approaches.

  This study was executed under supervision of ethical committee of 

Baqiyatallah University of Medical Sciences, Tehran, Iran (ethical 

code IR.BMSU.REC.1398.256).

2. Characteristics of CCHFV

2.1. Taxonomy and phylogenetics

  CCHFV is a member of the Bunyaviridae family’s Nairovirus 

class. This family comprises five groups and over 350 virus types, 

only three of which cause hemorrhagic fever in humans: Nairovirus, 
Phlebovirus, and Hantavirus. Nairoviruses are the tick-borne viruses 

comprising 34 different viruses that are classified into seven distinct 

serological serogroups[2,12]. CCHFV is a member of the CCHF 

serogroup, as is another virus known as the Hazara virus, which has 

not been proven to cause disease in humans[12,13].

2.2. Structure and genetic diversity

  CCHFV-RNA has a negative, one-stranded genome found in the 

thick capsid and has a diameter of 90 to 120 nm of the spheroidal 

particle. The CCHFV genome is divided into three segments: 

Large (L), Medium (M), and Small (S) based on their respective 

size (Figure 1)[1,6]. The L segment encodes RNA-dependent RNA 

polymerase (RdRp). M segment encodes non-structural proteins and 

glycoprotein, which dissociate into two structural glycoproteins (Gn, 

Gc), which are essential factors in the cell junction process prior to 

endocytosis, hemagglutination, triggering host immune response, 

and virus entry into host cells[1,8]. Besides, this gene is the main 

factor in immunity and pathogenicity. The S segment with viral 

polymerase has been involved in virus replication and transcription. 

Moreover, it encodes the nucleocapsid that responsible for the 

encapsidation of the virus[8,14].
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Figure 1. Schematic representation of CCHFV structure.

  Due to its wide regional range, CCHFV has the most genetic 

variation of tick-borne viruses. Several studies have shown that 

geographically distinct isolates of CCHFV strains can differ by up 

to 5% in the amino acid composition of the NP and L proteins and 

up to 25% in the glycoprotein precursor[8]. Nowadays, based on 

genetic diversity among RNA sequences (in particular S segment) 

of CCHFV strains, they are divided into seven to eight lineages 

(three from Africa, two from Asia, and two from Europe)[15,16]. The 

general impact of genetic variation on viral immunopathogenesis 

is still poorly understood. However, it should be noted that various 

factors including host condition, quantity of medical treatment, and 

individual vulnerability, contribute to the fatality rate that varies 

worldwide from 2% to 80%[2,17,18]. Also, for instance, observed 

differences in mortality rates caused by the same genetic lineage of 

CCHF, named AP92, across countries suggest that it is virulent in 

some (Turkey and Greece) and benign in others (China)[19-21].

2.3. Tick-host-virus interactions

  Ixodes ticks, specially the Hyalomma genus, are important for 

preserving and transmitting CCHF. Additionally, some ticks may 

transmit the disease through contact with an infected animal 

or through cohabitation with a tick. Moreover, some species of 

mammals serve as a key reservoir host for CCHF, which usually do 

not present any symptoms[22,23].

  In the first step for the virus entrance to the tick body, it needs to 

be able to prevail the midgut and salivary gland barriers and the 

immune system of the tick body[24]. Virus infection may influence 

the behavior, gene expression, and survival of the tick. The tick bite 

and the extended process of its feeding on the host is the first contact 

between the host and the tick, and Then, pathogens and other toxins 

transmit to the host through saliva secretions[25]. Various factors 

determine the transmission efficiency of the virus to the host, such 

as the volume of salivary glands secreted inside the host, since it is 

one of the main ways of the pathogen transmission to the host by 

the arthropod vectors; the attachment time, owing to its influence 

on the level of tick-host interaction; and abiotic agents (climatic 

and environmental), because of their impact in the affluence and 

aggressiveness of ticks that increase the chances of the host bite by 

the tick[26].

  The CCHF virus must infiltrate and surmount the host’s epithelial 

cells to proliferate and spread[27]. The virus then replicates to high 

titers at the injection site and in the epithelial cells, Dendritic cells, 

and macrophages, helping to move the virus to different infection 

sites. All that eventually leads to early infection of the local lymph 

nodes and peripheral blood-borne monocytes carrying the systematic 

dissemination of the virus[28]. Moreover, the major clinical features 

of CCHF, including bleeding and high vascular permeability and 

the attendance of viral antigens in endothelial cells (ECs), indicating 

that endothelium is the principal target of the virus. Also, Kupffer 

cells and hepatocytes have been demonstrated as significant targets 

in CCHF. The CCHFV receptor in the target cells is yet unknown, 

but according to some studies, the CCHFV glycoproteins (Gn, Gc) 

are involved in the primary binding of the virus to the plasma cell 

membrane of the host. Furthermore, Gc has mediated virus entry 

into the host[29].
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2.4. Transmission 

  CCHF Human infection typically happens by a tick’s bite, 

squashing an infected tick with ungloved hands, or through contact 

with the tissues or blood of infected humans or animals (wild or 

agricultural)[23]. Also, there is a possibility of human-to-human 

transmission by close contacts (family members) or hospital-

acquired infections[30,31]. Furthermore, extreme infant-maternal 

trans-transmission of CCHF has been confirmed to result in infant 

and fetal deaths[3,32].

  The latest reports indicate that the risk of human infection increases 

during the spring and summer when ticks eat and multiply[33,34]. 

Furthermore, studies have found a high correlation between the 

Hyalomma tick’s capacity for transmitting the CCHFV to humans 

and the ecosystem in which they grow. For example, it has been 

demonstrated that CCHFV has a substantial capacity for spread in 

areas with both small mammals (hedgehogs and hares) and large 

mammals (cattle and sheep)[5,35]. Previous studies have found that 

individuals who are in contact with animal blood, as well as medical 

personnel and laboratory workers are at higher risk for acquiring this 

disease[36]. In Turkey, for instance, almost 90 percent of all human 

cases recorded were in farmers, abattoir employees, and butchers[37].

3. Clinical/laboratory findings

  Studies have implicated that various vertebrate species, including 

birds, fish, amphibians, reptiles, and mammals, can be infected by 

CCHFV. However, it seems that severe or fatal CCHF can only occur 

in humans. Also, CCHF may appear as an asymptomatic, mild, or 

subclinical disease in humans[7,38]. However, it is still unknown why 

some human cases of CCHF develop severe or lethal illnesses, but 

others mild or asymptomatic. 

  In general, CCHF can be divided into four different stages, 

including incubation, pre-hemorrhagic, hemorrhagic, and 

convalescence, respectively (Figure 2). The incubation phase begins 

IgM (7 days-4 months), IgG (7 days-5 years)

PCR: first 9 days

Onset of 
symptoms

High fever

Hemorrhagic
manifestations

Viral load/Antigen

Platelets
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    5 days        7 days                             10 days
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1-3 days
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Figure 2. Phases of Crimean-Congo hemorrhagic fever. Incubation phase: after infection with CCHFV, the incubation period starts and lasts up to 7 days. This 
process is symptom-free[39]. Pre-hemorrhagic phase: this phase usually occurs shortly after the incubation phase and is characterized by generalized symptoms. 
High fever is the most common feature in this process. In addition, the first five days of the pre-hemorrhagic phase are the safest time to isolate CCHFV. 
Furthermore, the RT-PCR test will diagnose this disease in early stage. Additionally, serological diagnostic approaches based on CCHFV-specific IgM and IgG 
(ELISA, IFA) are only applicable after the first five days of disease[1]. Hemorrhagic phase: If detection erupted, the disease would progress to the hemorrhagic 
process at an alarmingly fast rate. This CCHF phase is characterized by hemorrhagic manifestations such as decreased platelet and/leukocyte counts, elevated 
liver enzymes, and pro-inflammatory cytokines[30,40,41]. Generally, the patient can start feeling better 10-20 days after the symptoms has finished.
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following the infection with CCHFV. Regarding virus exposure way 

(i.e., needle sticks, tick-bites, or respiratory exposure) and also viral 

load, this phase would continue for approximately 3-7 days[23,39]. 

The pre-hemorrhagic phase can occur soon after the incubation 

phase and continue for 1-7 days. Through this phase, symptoms 

are commonly unspecific. So, CCHF during the pre-hemorrhagic 

phase remains indistinguishable from viral fevers. Also, high fever 

is the main symptom of the pre-hemorrhagic stage, which can reach 

39 曟-41 曟[1]. Furthermore, other signs are headache, myalgia, 

diarrhea, retro-orbital pain, muscle aches, photophobia, a stiff neck, 

and some non-specific symptoms. This phase is usually short but 

can remain for one week. The entrance of CCHFV into the host's 

epithelial cells and establishment of the infection causes endothelial 

dysfunction and leakage of red blood cells (RBCs) and plasma 

from capillaries into the tissues. The initiation of the coagulation 

cascade and increased bleeding takes place as a result of endothelial 

dysfunction. Additionally, activating coagulation is likely to lead to 

the development of disseminated intravascular coagulation (DIC) 

and resulting in multi-organ loss and shock. Additionally, the leaking 

of the vasculature seen in affected patients occurs as a consequence 

of their overt infection with the CCHFV or as a result of cytokine 

discharge. The phase described above will occur in certain people 

and lasts between one and three days, with a fatality risk of 10% 

to 40%. During this time, the heavy bleeding and lower blood cell 

count will identify CCHF. This stage is characterized primarily by 

bleeding from mucous tissues (hematemesis, epistaxis, hemoptysis, 

melena, and hematuria), as well as gastrointestinal, gingival, and 

cerebral hemorrhages. Furthermore, the most common symptom 

at this stage is bleeding through the skin. In addition, the greatest 

probability of viral propagation is during this stage[30,40,41]. The 

recovery period starts ten to twenty days after the first symptoms 

of CCHF appear. This process typically involves ten days of 

pronounced fatigue, dizziness, changes in libido, and compromised 

memory.

  Thrombocytopenia, hepatocellular cytolysis, and leukopenia have 

been shown as the main laboratory complications observed in almost 

all CCHFV infected cases[42,43]. Thrombocytopenia features include 

increased activated partial thromboplastin time (aPTT), decreased 

prothrombin time (PT), and hypofibrinogenemia. Furthermore, 

common laboratory findings show raised levels of creatine kinase 

(CK), alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), and lactate dehydrogenase (LDH) in the patients[1]. CCHF 

often causes liver damage manifested as changes in liver enzymes 

ratio (AST, ALT)[43,44]. Moreover, some studies have reported 

neuropsychiatric disorders as the primitive symptoms of CCHF, 

which include confusion, disorientation, mood alteration, aggression, 

cerebral/cerebellar edema, and encephalopathy[1,45,46]. Besides, both 

cardiac and pulmonary disorders have also been demonstrated by 

other studies in CCHF infected cases[47,48]. Generally, progression 

to advanced (severe) CCHF is identified by thrombocytopenia, 

hemorrhagic manifestation, prolonged clotting times, elevated 

levels of circulating liver enzymes (ALT, AST), and high levels 

of inflammatory cytokines[43,44,49]. Fatal outcomes commonly 

occur following DIC, shock, and multi-organ failure (liver, spleen, 

heart, lung, and intestinal tissues) at the end of hemorrhagic phase 

(Table  1) [42,43]. 

  Currently, case fatality rates of CCHF in the world is ranging 

from 10% to 40%. This broad range may be due to variations 

in the virus, the way of exposure, and the dose of the infective 

virus[50,51]. In regard to the special condition of pregnant mothers 

(i.e., immunocompromised status), CCHF can be dangerous for both 

mother and fetal/neonatal[52]. Moreover, infected pregnant mothers 

have a higher mortality rate (up to 33%) compared to the overall 

lethality in humans. The CCHF-related mortality rate in fetal and 

neonatal is 58.5%[53]. Moreover, the high risk of nosocomial diseases 

is another concern of CCHFV infections during pregnancy[54,55].

4. Diagnosis 

  In brief, the diagnosis process of CCHF is comprised of 2 central 

stages: virus isolation and virus detection. Based on the studies, the 

best time for virus isolation is the initial five days of disease (in the 

pre-hemorrhagic phase) when the viremia is high (Figure 2). There 

are various cell lines for virus isolation, including  LLC-MK2, 

CER, SW-13, and BHK-21. In addition to cell culture, intracerebral 

inoculation of newborn mice can also be used for virus isolation; this 

method has higher sensitivity than the cell culture[56].

  Detection methods of CCHF are based on molecular and 

serological techniques (Figure 2). The molecular techniques are 

Table 1. Clinical/laboratory abnormalities of CCHF disease.

Associated with severe disease Associated with severe/fatal disease Associated with death References
Decreased platelet numbers
Decreased leukocytes numbers
Prolonged clotting times
Hemorrhagic manifestation
High viral loads
Elevated levels of liver enzymes (ALT, AST)
Absence antibody responses

Elevated levels of inflammatory cytokines

Disseminated intravascular coagulopathy (DIC);
Multi-organ failure (liver, spleen, lung, heart, and 

intestinal tissues);
Shock

[42-44,49]
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mainly used in the early stage laboratory diagnosis of CCHF during 

the first days after infection. For example, reverse transcriptase-

polymerase chain reaction (RT-PCR) can be employed in CCHF 

diagnosis by detection of the viral RNA in infected samples during 

the initial days of the disease[57]. Moreover, RT-PCR can detect both 

local CCHFV strains and several genetic lineages of the virus[58,59]. 

Enzyme-linked immunosorbent assays (ELISA) and IFA (in-

house or commercial) can be used as the serological methods in the 

CCHF diagnosis by detection of the CCHFV-specific IgM and IgG 

antibodies[60]. Unlike biochemical approaches, which can be used 

to diagnose disease at an early stage, serological procedures can be 

used to diagnose disease only within the first five days of infection 

(Figure 2); IgM and IgG antibodies would be detected only after five 

days of illness. Furthermore, most serological assays use N protein 

(NP) as the CCHFV antigen[61].  

  Study analysis  using in si tu hybridization (ISH) and 

immunohistochemistry (IHC) can help in the diagnosis of CCHF 

and its pathogenesis[62]. Plaque reduction neutralization tests 

(PRNT) can be used to quantify the titer of CCHFV neutralizing 

antibody[63]. Recent advances in diagnostic and research laboratory 

instruments, including next-generation sequencing (NGS), provide a 

beneficial tool for better investigation on the CCHFV. Moreover, the 

whole genome sequence (WGS) of the CCHFV has been recently 

obtained by the use of de novo NGS[64,65]; analysis of WGSs would 

result in developing effective diagnostic tools and more studies 

on recombination, reassortment events, and virus evolution[66,67]. 

Furthermore, a CCHFV μ-capture ELISA with increased sensitivity/

specificity and a CCHFV IgG immune complex (IC) ELISA have 

recently been developed for detection of CCHFV-specific IgM and 

IgG antibodies, respectively[68].

  It is worthy of mentioning that CCHF is a highly contagious disease 

and generates serious complications. So, the sampling and diagnosis 

process of this disease suspected cases must only be conducted in 

high-containment laboratories (BSL-4) by expertized staff[69].

5. Immunopathogenesis system 

  Infection with CCHFV can result in inducing a series of immune 

responses, including the inflammatory immune responses, innate 

immune responses, and adaptive immune responses, which are 

crucial for the host defense against the pathogens. However, CCHFV 

may either disrupt or cause a delay in these antiviral responses[37]. 

Levels of inflammatory cytokines and chemokines may be increased 

as a result of inflammatory immune responses to CCHFV, which 

would result in an intensifying effect in the immune-pathogenesis of 

the virus[70,71].

5.1. Inflammatory and innate immune responses

  The innate immune response is the body’s first line of defense 

against the CCHFV. Studies on the effects of CCHFV in mice 

lacking of type栺interferon system revealed the critical role of host 

innate immune responses in limiting CCHFV pathogenesis, which 

led to developing severe or fatal illness in mice[47,48].

  While inflammatory cytokines and chemokines are useful for the 

antiviral responses in innate immunity response, higher levels of 

these molecules can cause pathological damage and subsequently 

progress the infection and death[72]. For example, recent studies 

have demonstrated elevated levels of the interleukin-8 (IL-8), IL-6, 

tumor necrosis factor (TNF)-α, and monocyte chemokine MCP-1 

(CCL2) in the fatal/severe CCHF cases compared to non-fatal 

patients[49,73]. The presence of secreted expression of the trigger 

receptor on myeloid cells-1 (sTREM-1) has been identified by other 

researchers as a reinforcement of inflammatory responses in CCHF 

viruses. However, it remains to be empirically demonstrated how 

an abnormal amount of these inflammatory agents would result in 

driving pathogenic processes[74].

  Interferons (IFNs) are critical compounds of the innate immune 

system in the antiviral response by inducing the expression of the 

antiviral proteins and also limiting the spread of the infection[75]. 

CCHFV replication causes activating innate immune system 

that would result in the induction and discharge of IFNs and 

subsequently upregulation of interferon-stimulated genes (ISGs) 

that involved in innate immune responses of the host to pathogens. 

However, some studies indicated that CCHFV caused a delay in 

IFNs production in infected cells, which resulted in the prevention 

of IFNs antiviral effect. Overall, IFNs could not alone suppress the 

CCHFV replication during progressing infection[76,77].

  One of the well-known sensors of CCHFV is retinoic acid-

inducible gene I (RIG-I) that may be disrupted by viral RNA to 

avoid sensing. However, CCHFV sensing is improved by more 

innate immune sensors[17,78]. Other studies in CCHF patients have 

shown a correlation between polymorphisms in toll-like receptors 

(TLRs) and the severity of the illness, which has suggested TLRs as 

a likely remarkable immune-sensing pathway in the control of virus. 

For example, polymorphisms in TLR7, 8, 9, and 10 have been found 

to correlate with illness severity in infected cases in Turkey[17,79]. 

In addition to TLRs, it has been found a correlation between 

polymorphisms in nuclear factor-kappa B and a higher risk of CCHF. 

However, more investigation is required to identify the association 

of related polymorphisms with CCHF in various populations of 

different geographic regions[80]. It has been found that host apoptotic 

pathways could disrupt CCHFV replication; CCHFV replication 

can induce apoptosis that would result in activation of caspase 3 

cleaving the CCHFV nucleoprotein and subsequently suppressing 
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viral replication[81,82]. However, recent studies state that CCHFV can 

disrupt innate immune signaling through a domain named ovarian 

tumor-related deubiquitinase (OTU) encoded by L segment. OTU 

domain can disrupt innate immune responses by deubiquitinating 

proteins involved in innate immune signaling pathways[83]. 

Furthermore, ISG15 modifications that have been involved in direct 

antiviral responses can be cleaved by the CCHFV OTU domain. 

ISG15 acts as a regulator of host innate immune response to 

CCHFV infection[84-86]. In addition to deubiquitinase activity, the 

de-ISGylation has also been found in the OTU domain that may be 

essential for the domain's activity and also viral pathogenesis[86]. 

More researches have found the significant role of the OTU domain 

in overcoming interferon responses[83].

5.2. Adaptive immune responses

  Unlike the innate immune response, the function of adaptive 

immune responses in the immunopathogenesis of CCHF is less 

well known, which is mainly due to the lack of proper animal 

models. However, recent studies have provided promising results in 

correlation to the function of adaptive immune responses in CCHF 

immunopathogenesis. Studies have found a correlation between low-

to-absent anti-CCHFV antibody response with severe disease and 

death[43,44,87]. Moreover, antibody levels, host IgM and IgG antibody 

responses against both the glycoproteins and nucleocapsid protein 

of CCHFV could be taken as a predictor of illness outcome[87]. 

Nevertheless, it is yet to know whether antibody responses contribute 

to the prevention of initial CCHFV infection or not. CCHF survivors 

are usually seen with low neutralizing antibody responses, and 

even in the fatal cases of CCHF, these responses are undetectable. 

In this regard, some studies on CCHFV survivors in Turkey and 

South Africa recognized antibody responses against epitopes in the 

mucin-like domains (GP38, Gn protein) that are not likely to lead 

to neutralizing antibodies[88,89]. Nevertheless, conservation of non-

neutralizing antibodies against fatal CCHF challenge has shown that 

other mechanisms (except neutralization) can also protect antibodies.

  Recent CCHF related research, Spengler et al, has developed a 

humanized mouse model of CCHFV, and they found that CCHFV 

infection would result in activation of T cells. Also, they identified 

high levels of perforin as a marker of cytolytic activity in CD8+ T 

cells[90]. Other studies have found a positive correlation between 

the numbers of circulating CD3+ CD8+ T cells in CCHF patients 

and lethal outcomes[91]. Moreover, it has been shown a long-lived 

CD8+ T cell response to the virus in some survivors of CCHF[92]. 

Other studies using STAT1-deficient mice have demonstrated early 

activation of CD4+ and CD8+ T cells against CCHFV infection. 

Some researchers identified a correlation between human leukocyte 

antigen alleles and the protection and sensitivity of CCHFV[93]. 

Thus, using updated viral vaccine studies for CCHF indicating 

that T-cell activity could be important in providing the bulk of the 

CCHF immunity[94,95]. A recent study on mice treated with an 

interferon blockade antibody by Lindquist et al. showed that adaptive 

immune responses could control CCHFV in mice. Moreover, they 

found out that adaptive immune responses, including cytolytic T-cell 

activity, not necessarily resulted in liver damage following CCHF 

infection. Thus, CCHFV could directly cause liver damage[96]. 

  Generally, despite all findings mentioned above about the role of the 

adaptive immune response in the immunopathogenesis of CCHFV, 

more studies are still needed to better knowledge of the interactions 

among virus and host adaptive immune response. While adaptive 

immune response and disease responses in cynomolgus macaques 

have been recently achieved, this is just a small step forward on the 

research and will pave the way for a better understanding of these 

two topics in the future[97].

6. Animal models

  Until 2010, intracerebrally inoculated neonatal mice were the 

only available model used in CCHFV related studies. Like other 

developed animal models in laboratory research, they represented 

no illness following inoculation[23]. Currently, CCHFV studies 

commonly use mice lacking type栺or both type栺and type栻IFN 

responses[47,48,98]. These interferon deficient mice are typically 

susceptible to CCHFV and show an abrupt onset of severe illness 

and subsequently, death in approximately four days after the 

appearance of the disease. Moreover, these mice exhibited some of 

the behavior similar to humans after CCHFV infection, including 

elevated levels of inflammatory cytokines and also high amounts of 

liver enzymes (ALT, AST)[97,98]. 

  In recent years, novel animal models of CCHFV have been 

developed in order to study interactions among hosts and viruses. 

For example, Hawman et al. has recently developed a novel model 

of the type栺interferon-deficient mice, in which mice lacking type

栺interferon infected with a human clinical isolate named strain Hoti 
developed progressive illness with several days of obvious clinical 

symptoms and subsequent death about day 7 or 8 (Table 2)[99,100]. 

However, it has been demonstrated that other clinical isolates, 

including the Afg-09 strain, can cause quickly fatal illness in these 

mice[97]. These different clinical results of various CCHFV strains in 

mice suggested that there are probably major virulence determinants 

within CCHFV that have yet to be identified. Other research 

developed a mouse model in which MAR1-5A3 monoclonal 

antibody was used to block IFN receptor signaling, allowing for 

transient interferon signaling blockade in a variety of mouse genetic 

backgrounds[96,101]. In addition to the aforementioned mouse models 
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of CCHFV, a novel humanized mouse model engrafted with human 

CD34+ hematopoietic stem cells (HSC) has been developed by 

Spengler et al. (Table 2)[90].

  Until recently, there was no immunocompetent animal model for 

CCHFV. Elaine Haddock et al. have recently described a cynomolgus 

macaque model of CCHF infected with a human clinical isolate of 

CCHFV (strain Hoti) that exhibited many features of human cases 

of CCHF (Table 2). Moreover, these immunocompetent macaques 

developed a broad-ranging of clinical outcomes similar to human 

CCHF cases, as well as pathological complications, including high 

amounts of inflammatory responses (i.e., cytokines and chemokines), 

primary viremia, low levels of platelets, and high amounts of ALT 

and AST[102].

7. Antiviral measures

  Owing to the high prevalence of CCHFV over various geographical 

areas, proper preventive measures have been required to prevent 

infection against CCHFV. For this purpose, so far, several diverse 

vaccination and therapeutic approaches have been examined 

for CCHF. Nevertheless, Globally, no appropriate medication 

is available for this disease. However, a whole inactivated virus 

produced in the neonatal mouse brain is the only human CCHFV 

vaccine[103,104]; due to concerns about vaccine safety and efficacy, 

they are just used in Bulgaria and have not been licensed for general 

use in other countries. Studies linked to CCHFV have started 

in this regard to assist the creation of new individual CCHFV 

platforms. In preclinical studies, some of these vaccines have 

shown positive outcomes so far. At the moment, complete defense 

against lethal CCHFV infection in mice has been achieved through 

the development of several vaccination approaches, including 

improved vaccinia virus expressing CCHFV glycoproteins, DNA-

based vaccination, and virus-like particle vaccination[94,101,105]. In 

addition to glycoproteins, the nucleoprotein of CCHFV encoded by 

S segment can also be used in developing modified vaccines[106,107]. 

Besides, based on some studies, nucleoprotein vaccines can 

induce immune responses directly, causing protection without the 

interference of glycoproteins. In this regard, the development of a 

vaccinia adenovirus expressing the nucleoprotein of CCHFV led 

to significant protection in mice against fatal CCHFV challenge. 

However, some studies on nucleoprotein-based vaccines have 

implicated that induced protection by these vaccines may be 

insufficient. It is worthy of mentioning that recent advances in 

the development of animal models, such as humanized mice and 

cynomolgus macaques, can contribute to the production of effective 

CCHFV vaccines[108].  

  Currently, both synthetic nucleoside analog ribavirin and 

immunotherapeutic approaches are used for the treatment of CCHF 

in humans. Hyperimmune human plasmas/serum that derived from 

either vaccinated individuals or CCHF survivors would be used 

in immunotherapeutic methods. Currently, ribavirin possesses the 

highest usage among other therapeutic approaches in CCHFV 

patients. Nevertheless, there are inconsistent clinical data for 

ribavirin efficiency and also for the results of treatment with ribavirin 

in CCHF cases[108-110]. For example, a recent ribavirin therapy on a 

CCHF patient in Spain led to decrease viral titers and also mutagenic 

impacts on CCHFV at the beginning of treatment[111]. Thus, this 

Table 2. Animal models of Crimean-Congo hemorrhagic fever virus (CCHFV).

Animal model Features (advantages and limitations) References

Type栺 interferon- deficient mice

Either genetic knockout or antibody blockade.
Develop viremia, liver failure, rapid-onset terminal disease, and 
inflammatory immune responses.
Multiple CCHFV strains can be used.
Useful for examining therapeutic interventions against CCHFV.
Limited for examining host immune responses to CCHFV due to 
innate immune deficiencies and death prior to adaptive immune 
responses.

[99,100]

Humanized mice
Mouse engrafted with human CD34+ hematopoietic stem cells.
Strain-specific virulence observed.
Exhibit a neurological-type disease.

[90,99]

Cynomolgus macaques

Immunocompetent macaques infected with a human clinical isolate 
of CCHFV called strain Hoti.
Develop viremia, inflammatory immune responses, elevated levels of 
liver enzymes (ALT, AST), and prolonged clotting times.
Represent a spectrum of disease outcomes from asymptomatic to 
lethal disease.
Main sites of viral replication are liver and spleen.
Useful preclinical model for therapeutic interventions against 
CCHFV.
Valuable for studying host and viral determinants of disease 
outcome.

[99,102]
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treatment was eventually stopped due to a potential complication 

in ribavirin therapy termed hemolytic anemia[57,108,112]. According 

to the results of various human and animal studies, it is suggested 

that ribavirin may potentially improve clinical outcomes in the early 

stages of CCHF disease, particularly within the first four days where 

there are no serious symptoms, while also decreasing mortality[113]. 

Another therapeutic option for CCHF is favipiravir, which was 

initially used as a treatment approach for influenza virus infections 

in Japan[114]. Subsequent research revealed that favipiravir therapy 

inhibited CCHFV replication. Researchers observed that favipiravir 

could be given later in the disease and may lead to substantial 

results for advanced (severe) CCHF patients and also avoid death 

in those cases. These data say favipiravir can be used to treat 

CCHF. Oestereich et al. found that favipiravir and ribavirin could 

be combined with the same therapeutic effectiveness as a single 

medication in CCHF cases with a lower dosage of both medications. 

Additionally, they proposed that combined therapies could be 

beneficial in the treatment of CCHF in humans through reducing 

adverse side effects[97]. Other clinical trials, including employing a 

monoclonal antibody called mAb-13G8 that resulted in protecting 

neonatal mice from lethal infection, have recently been conducted 

either in vitro or in vivo and showed promising results[89,115]. 

  Overall, the main agents of the current lack in required antiviral 

measures include lack of in vivo animal studies, the limitation in 

the abundance of infected humans with CCHFV, and the economic 

limitations in this field.

8. Conclusions

  CCHF is a widespread tick-borne zoonotic infectious disease 

that is found in a variety of geographical areas. CCHF has great 

potential to be an endemic or even epidemic disease in different 

regions worldwide. The transmission of the virus to humans 

mainly happens by tick’s bite or contact with infected animals or 

humans. CCHF appears in humans from asymptomatic to severe/

lethal with a case fatality rate of up to 40%. Nowadays, CCHFV 

has gradually become a serious threat across some areas, owing 

to the high capability of transmission to new geographic regions, 

high severity of the disease, and the possibility of human-to-human 

transmission. Moreover, there is yet no FDA-approved vaccination 

and therapeutic approaches for CCHF. Also, most of the antiviral 

strategies to prevent and treat human CCHF remain controversial 

or experimental. However, such drugs are currently used, and their 

clinical results are inconsistent in CCHF patients. One of the main 

limits of CCHF  vaccine development is the absence of specialized 

animal models; in terms of structural, immune, and therapeutic 

dimensions, mouse and primate models have been significantly 

improved. This advance in study tools of CCHFV would contribute 

to the development and evaluation of novel vaccines and therapeutic 

approaches in order to decrease or prevent CCHFV-induced fatality 

cases in humans. Generally, many aspects of the CCHFV remain 

poorly defined and need more consideration. Also, more attention 

should be paid toward the role of the ticks and wild and domestic 

animals involved in maintaining, transmitting, and pathogenesis 

of virus; this could lead to substantial measures regarding control 

of CCHF expansion. However, the recent significant advances in 

recognizing CCHFV structure, genetic diversity, life cycle, clinical/

laboratory complications, and immunopathogenesis interactions 

among host and virus could be promising to overcome challenges 

ahead.
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