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The interactions between the tumor microenvironment and the tumor cells confers a condition that accelerate or decel-
erate the development of tumor. Of these cells, mesenchymal stem cells (MSCs) have the potential to modulate the 
tumor cells. MSCs have been established with double functions, whereby contribute to a tumorigenic or anti-tumor 
setting. Clinical studies have indicated the potential of MSCs to be used as tool in treating the human cancer cells. 
One of the advantageous features of MSCs that make them as a well-suited tool for cancer therapy is the natural 
tumor-trophic migration potential. A key specification of the tumor development has been stablished to be angiogenesis. 
As a result, manipulation of angiogenesis has become an attractive approach for cancer therapy. This review article 
will seek to clarify the anti-angiogenesis strategy in modulating the MSCs to treat the tumor cells.
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Introduction 

  Malignancies and cancer diseases account for a quarter 
of human death cases (1). The typical therapeutics for 
chances, including surgery, chemotherapy, and radio-
therapy have not been able to be satisfying in treating the 
cancer patients. Although the methods for treating the ma-
lignancies and curing the cancer patients have greatly 
been improved in last years, in most of the cases there 
is not a proper response to the traditional therapeutics by 
the cancer cells. The tumor specificity is regarded to be 
the most important factor in limiting the efficacy of tradi-
tional cancer medications. Hence, it seems necessary for 
the medicine to search for the most efficient treatment ap-
proaches specifically targeting malignancies (2).
  Mesenchymal stem cells (MSCs) are considered as the 
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primary option for obtaining the stem cells for using in 
clinical and experimental applications. These cells have 
been obtained from various tissues, including brain, heart, 
and kidney suggesting a potential of promising candidates 
for several human diseases (3-7). MSCs are able to differ-
entiate toward different cells and can simply be expanded 
in vitro, and therefore, have attracted the interests for uti-
lizing in treatment options of that human diseases. They 
have the ability for self-renewal into mesenchymal lineages. 
MSCs exhibit pathotropic migratory features, establish 
them as potential candidates for selective delivering the 
drugs with the aim of tumor therapy (3, 4). 
  Tumor cells applies angiogenesis to be survived and 
proliferated (8). A number of growth factors and ex-
tracellular matrix proteins are responsible for tumor an-
giogenesis and, therefore, researchers have been attracted 
to utilize the targeted anti-angiogenic therapy of treatment 
of tumors (9, 10). Besides, several stem cells have been 
modified in vitro for expressing anti-angiogenic factors 
more efficiently (3). In this review article, we try to clarify 
the possible applications of MSCs through anti-angiogenic 
properties to treat cancer patients.

Characteristics of MSCs

  MSCs are considered as the adult stem cells and natu-
rally generated in the human body. MSCs were initially 
found in the bone marrow (BM) stromal matrix but they 
are distributed throughout the body (11, 12). MSCs are 
commonly found in several fetal and adult organs, like 
amniotic fluid, heart, skeletal muscle, adipose tissue, syno-
vial tissue, placenta, pancreas. According to evidence, or-
gans and tissues containing connective tissue have also 
MSCs in themselves (13). MSCs are considered as the 
primitive cells that are basically originating from the mes-
odermal germ layer and have been regarded as progenitor 
cells that have the potential to be developed to the con-
nective tissues, skeletal muscle and vascular cells. MSCs 
have also the potential to be differentiated into cells of 
the mesodermal lineage, like fat, bone, and cartilage cells, 
but they can also differentiate into neuroectodermic and 
endodermic cells (14). MSCs have been considered as an 
important source in biomedicine due to the multilineage 
capacity (15). Because of an ease in acquisition, fast pro-
liferative capacity, and the autologous transplantation po-
tential, MSCs have been regarded as the first option of 
stem cells to be utilized in the regenerative medicine. 
MSCs may confer advantageous capacity for cell recovery 
in the harmed tissues (16). These stem cells has been re-
ported to be involved in the modulation of immune cells 

and, hence, are attributed to be contributing factor in au-
toimmune disorders (17, 18). Studies have established a 
tumor specific migration and residence feature for MSCs, 
suggesting a positive capacity of these cells to be utilized 
as promising carriers of drugs for the aim of cancer ther-
apy (19). Both pro- and anti-cancer characteristics have 
been attributed to MSCs (20); nonetheless, if MSCs are 
monitored efficiently, for example with anticancer agents, 
they could be applied in cancer therapy.

Sources of MSCs

  Several sources of adult tissues have been identified for 
MSCs extraction and the harvesting of MSCs is not sub-
ject to the ethical issues (3). MSCs are potentially able to 
develop to various tissue types that might be either within 
or across the germ lines (21). BM-derived MSCs have been 
attributed with the highest level of lineage plasticity, that 
can be differentiated to the almost all cell types (22, 23). 
That notwithstanding, the available data obtained from 
the preclinical studies have indicated that the BM-derived 
MSC may not be the best source for utilization in the 
clinic. Invasive procedures are used for the harvesting of 
BM that yields a little number of cells. On the other side, 
the number, differentiation capacity, and life time of 
BM-derived MSC are decreased as the individuals become 
older (24, 25). Adipose tissue and umbilical cord blood are 
considered as two alternative sources to harvest MSCs. 
Recently, MSCs obtained from adipose tissue have gained 
high attention to be used in preclinical and clinical evalu-
ations, since tissue sampling is simple, the initial cell 
numbers is high, and the proliferation potential is sat-
isfactory (26). However, phenotypes of MSCs, and the ex-
pansion and differentiation capacity of these cells origi-
nating from the adipose tissue are similar to those ob-
tained from BM (27). 
  Furthermore, the umbilical cord blood as well as the 
wharton’s jelly have been implied to have a plenty of 
MSCs (28). The cells extracted from placenta in adherent 
layer, which is considered a noninvasive and simple ap-
proach, have been reported to have a fibroblastiod mor-
phology, which represent similar surface molecules as 
BM-derived MSCs, such as CD90, CD13, CD49e, CD29, 
and CD54 (29). Umbilical cord blood-derived MSCs show 
the ability to proliferate at a higher rate in comparison 
to the BM and adipose tissue-derived MSCs (27, 30), 
which is probably because of high telomerase activity in 
the umbilical cord blood-derived MSCs (31).
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Fig. 1. The migration and homing of MSCs into the tumors. The 
inflammatory state conferred by the tumor microenvironment re-
sults in recruitment and homing of MSCs into tumor. After that, 
MSCs constitute the major cell type of the tumor microenvironment 
and play several functions.

Circulation and Homing of MSCs

  As the first step in the homing, MSC needs to migrate 
from the BM to the circulation and move toward other 
tissues (Fig. 1). It has been indicated that MSCs can mobi-
lize from the BM as well as other tissues to the circulation 
upon the various injury situations, including hypoxia, nor-
moxia, and inflammation (32, 33). It is not completely di-
vulged that how MSCs migrate from the BM and cross 
through the endothelium and how home in the tissues. 
That notwithstanding, it is clear that a common role of 
MSCs is to home in and repair the injured organs. The 
wound healing ability of MSCs initiates with their migra-
tion to the signals released from the injured organs (34). 
Various inflammatory factors released from wounds have 
also been identified in the tumor microenvironment that 
have been attributed to the migration of MSCs (35). 
Among the mediators/receptors involved in the migration 
of MSCs are MCP-1/CCR2, SDF-1/CXCR4, HGF/c- Met, 
SCF-c-Kit, VEGF/VEGFR, PDGF/PDGFR, and HMGB1/ 
RAGE (36). The involvement of the stromal cell-derived 
factor SDF-1 and the related receptor, CXC chemokine re-
ceptor-4 (CXCR4), in the migration of MSCs identified 
in surveys that either the receptor or the cytokine was 
knocked down (37-39). Furthermore, it was demonstrated 
that inhibition of CXCR4 and SDF-1 in mice cause 
marked decrease in the migration of exogenous stem cells 
to target organs (37). It has also been indicated that the 
blockade of CXCR4 resulted in an impaired homing of en-
dogenous MSC into tumor sites, development of MSCs in-
to myofibroblasts, and reduced MSC survival (40). It has 

been revealed that chemokines like CXCL12, CXCL13, 
CXCL16, and their receptors play a role in the mutual 
mobilization of MSCs to BM and generate the BM niche. 
In the efficient homing of MSC into the BM, CXCL16 
play an important role. CCL22 has been shown to play 
the strongest chemotactic impression in the migration of 
MSCs from the BM into the blood (41). Tumor tissues 
represent CCL2 and CXCL16, suggesting that they are 
playing a vital role in the mobilization and migration of 
MSCs into tumor sites (42-44). 
  Matrix metalloproteinase (MMPs) enzymes poses pro-
teinases function, which is needed for proteolytical cleav-
age of precursor proteins, such as adhesion molecules, 
growth factors, cytokines, as well as some receptors. It has 
been demonstrated that MMP-1 and tissue inhibitor of 
metalloproteinase-3 (TIMP3) play role in the migration of 
MSCs across the BM endothelium (45). Plus, increased 
MMP-2 levels in the serum was attributed to the C1q com-
plement -mediated migration of umbilical cord blood-de-
rived MSC into the wounded tissue (46). 
  It was demonstrated that MSCs were recruited to the 
regions of irradiation, and local irradiation may increase 
the MSC specificity to be homed in particular tissues (47). 
These observations about the migratory characteristics of 
MSCs testify the promising potentials for designing the 
therapeutic tools that exploit the tumoritropic features of 
MSCs through engineering these cells towards potent cells 
via delivering the compounds against tumors.

The Behavior of MSCs in the Tumor 
Microenvironment

  MSCs show different kinds of activities in various mi-
croenvironments because of the diversity in the signaling 
pathways involved in the stimulation of MSCs. In the clin-
ical studies, employed MSCs are primarily naïve, obtained 
from normal tissues, and are usually harvested in vitro. 
Such naïve MSCs have the ability to interfere with the tu-
mor cell growth in co-cultures with tumor cells. It was ob-
served that naïve MSCs could decrease the expansion of 
leukemia cells. Such blocking property of naïve MSCs was 
seen to be dose-dependent, as the naïve MSCs was in-
creased, the rate of inhibition of tumor growth was 
increased. It was suggested that naïve MSCs might de-
crease the expansion of tumor cells through mediators re-
leased from MSCs, such as Dickkopf-related protein 1 
(DKK1), an inhibitor of Wnt signaling pathway in tumor 
cells (48). Interfering in the Wnt pathway was associated 
with the decreased expression of Cyclin D2 and c-Myc as 
well as increased expression of P27KIP1 and P21CIP1, 
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that culminated in the interruption of tumor cell cycle 
(49-52). On the other side, naïve MSCs have the potential 
to activate the apoptosis in tumor cells (53) via increasing 
the expression of caspase 3 (50). Furthermore, naïve MSCs 
have the potential to decrease the expansion of tumor cells 
via inhibiting the angiogenesis. In this way, naïve MSCs 
increase the apoptosis rate in vascular endothelial cells 
and interfere with angiogenesis (54, 55). 
  On the other side, tumor supporting activities of MSCs 
have also been reported (56). An equilibrium between an-
ti-inflammatory and pro-inflammatory phenotypes of 
MSCs determine the influence of MSCs on the pro-
gression or suppression of tumor cells (57). It has been 
shown that MSCs inside tumors might undergo functional 
modulations to alter from an anti-tumorigenic phenotype 
to pro-tumorigenic MSC (58, 59). MSCs with anti-in-
flammatory properties are involved in contributing to tu-
mor development by several mechanisms. Tumor pertur-
bations has been shown to be associated with recruitment 
of MSCs to tumor sites (60). MSCs are able to regress im-
mune responses against tumor cells (61), induce angio-
genesis in tumors (62, 63), promote epithelial-to-mesen-
chymal transition (EMT) resulting in metastasis (64, 65), 
and induce a resistance in tumor cells to different ther-
apeutics (66). Furthermore, it has been indicated that 
MSCs promote tumor progression through modulating the 
metabolic settings of tumor cells. Particularly, prosta-
glandin E2 secreted by MSCs is able to abrogate the apop-
tosis of lymphoblastic leukemic cells (67). MSCs produce 
lactate in a tumor microenvironment with high oxidative 
stress conditions that is uptaken via tumor cells, resulting 
in promoted migratory ability of tumor cells (68). Naïve 
MSCs have also been attributed with the increased angio-
genesis in the colon cancer cell lines (69, 70), differ-
entiation of MSCs to vascular endothelial cells in melano-
ma (71), increasing the development of cancer stem cells 
(CSCs) that promote the tumorigenesis and metastasis 
(72) in breast cancer (73), enhanced proliferation of gas-
tric cancer cell lines (72, 74). Moreover, naïve MSCs might 
support tumor progression through increasing the mi-
gratory abilities of tumor cells via production of chemo-
kines, like CXCR4 (75), CCL5 (76, 77), intercellular adhe-
sion molecules (ICAMs), and vascular cell adhesion mole-
cules (VCAMs) (78). Moreover, by suppressing the im-
mune responses, MSCs has been observed to enhance the 
tumor development (79). 
  In addition, MSCs generate a wide range of chemokines, 
cytokines, and growth factors that mediate paracrine- or 
autocrine functions in the tumor development (80). These 
factors are able to modulate the tumor microenvironment 

to a tumor supporting settings. Several inflammatory me-
diators secreted by MSCs, including CXCL1, CXCL2 or 
CXCL12, are able to indirectly enhance tumor develop-
ment in several tumor models (81, 82). In the same way, 
MSCs-derived inflammatory chemokines and cytokines, 
such as IL-8 and IL-6, contribute the tumor development 
in colon cancer (83) and breast cancer (73) models. By a 
paracrine mechanism via IL-6 and CXCL7 secretion, 
MSCs was shown to migrate into breast cancer xenografts 
and promoted the development of CSC subpopulations 
(73).
  It seems that MSCs may represent bidirectional behav-
iors on tumor development, and various studies have re-
ported a disagreement on the MSCs effect on the tumor 
progression or inhibition. However, it is worthy to men-
tion that there is a general agreement that MSCs are fre-
quently contribute to the tumor development in compar-
ison to suppressing tumor growth, which is widely attrib-
uted to the regenerative functions and immune system 
suppression by MSCs (84, 85).

MSC-Derived Extracellular Vesicles 

  Extracellular Vesicles (EVs), like exosomes, are mem-
brane-enclosed vesicle with a size of 40∼1,000 nm that 
are produced by several cells, such as MSCs (86). EVs pri-
marily encompass microRNAs (miRNAs) as well as pro-
teins, which is encapsulated by a lipid bilayer membrane 
(87-90). Secreted EVs are able to move toward other cells 
and bind them in order to deliver several signals to the 
targets (91). MSC-derived EVs are able to modulate sev-
eral processes in the tumor cells, including metastasis, an-
giogenesis, and proliferation (92) as well as control im-
mune cells (93, 94). Indeed, MSC-derived EVs might pro-
mote the tumor development or repress tumor progression 
(95). 
  Umbilical cord derived MSC-EVs was shown to melio-
rate the oxidative stress and cell apoptosis as well as pro-
mote cell proliferation in rats with cisplatin-induced 
nephrotoxicity (96). Additionally, Zhu et al. (97) indicated 
that MSC-derived EVs promoted tumor growth through 
promoting the expression of vascular endothelial growth 
factor (VEGF) in tumor cells by induction of the ex-
tracellular signal-regulated kinase1/2 (ERK1/2) pathway. 
Therefore, MSCs are able to promote tumor growth and 
angiogenesis by secreting EVs.
  On the other hand, it was shown that BM-derived 
MSCs-EV caused cell-cycle arrest in the G0/G1 phase and 
induced apoptosis in tumor cells (98). Additionally, 
MSCs-EV interrupted the angiogenesis by suppressing the 
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expression of VEGF in tumor cells (99). Furthermore, 
MSC- derived EVs containing miRNAs targeting VEGF 
were observed to suppress angiogenesis in human naso-
pharyngeal carcinoma cells (100). miR-143, which has 
been investigated in several malignancies (101), was in-
dicated to be harbored by MSC-derived EVs an reduced 
the migration of osteosarcoma cells (102). As a con-
sequence, MSC-derived EVs are able to repress the tumor 
cell proliferation and angiogenesis.

Exertion of MSCs for Treatment of Tumor

  Naïve MSCs (have not undergone any manipulation) 
have been reported to possess antitumor properties. This 
antitumor activity has been attributed to the mediators 
produced by MSC that have the potential to decrease the 
proliferation of tumor cells in different cancers, including 
breast adenocarcinoma, melanoma, hepatoma, lung can-
cer, and glioma (52, 103-105). In a mouse model of Kaposi’s 
sarcoma, the BM-derived MSCs were administered intra-
venously that resulted in the homing of these cells in the 
tumor sites and prevented the progression of tumor (106). 
Studies in vitro and in the mouse model of melanoma in-
dicated that MSCs possess the ability to repress the angio-
genesis (55). Furthermore, MSC administration to the 
melanoma mice model subcutaneously eventuated in in-
creased apoptosis rate and decreased expansion of tumor 
(55). In addition, umbilical cord blood-derived MSCs 
overexpressing CD44 and CD133 were reported to in-
crease apoptosis rate in the glioblastoma multiforme cells 
in vitro (107). As well, umbilical cord blood-derived MSCs 
administration resulted in underexpression of XIAP acti-
vating caspase-3 and caspase-9, leading to increased apop-
tosis rate in the glioma cells (108). To comply with these 
observations, umbilical cord blood-derived MSCs as well 
as MSCs from other sources indicated reduced expansion 
of the glioblastoma multiforme cells through tumor ne-
crosis factor (TNF)-related apoptosis-inducing ligand 
(TRAIL) (109).

Modulation of Angiogenesis for the Treatment of 
Cancer

The process of angiogenesis
  In the embryonic development period, neovascularization 
or new blood vessel formation from pre-existing vessels is 
regarded as a major occurrence that leads to the con-
struction of vasculature system that contains endothelial 
cells (ECs) (110). During the physiological situations, vas-
culogenesis is seldomly observed in the adults. That not-

withstanding, angiogenesis may be seen in adults as a 
physiological event during pregnancy as well as the cy-
clical growth of vessels in the ovarian corpus luteum (111, 
112). In the pathological conditions, such as tissue repair 
during wound healing and tumor growth, neovascula-
rization is considered as a normal phenomenon (113). 
However, it should be noted that the structure and compo-
sition of the tumor vessels are different from those oc-
curred in the normal vessels. It has been shown that ECs 
of tumor tissues express higher levels of CD109, CD137, 
CD276, and placenta growth factor (PlGF) compared with 
the ECs originating from the normal non-tumor organs. 
In spite of a bulk of studies with respect to the cellular 
and molecular characteristics of ECs from different tu-
mors, there are disagreements with respect to the origin 
of ECs in the tumor conditions (114). It has been reported 
that endothelial progenitor cells (EPCs) are actively in-
volved in the angiogenesis process of tumors (114). 
However, it is clear that the initiation of angiogenesis re-
quires a divergence toward a profile of increased angio-
genesis activators, while inhibited process of angiogenesis 
suppression. The critical stimulating mediators of angio-
genesis include vascular endothelial growth factor 
(VEGF)-A, fibroblast growth factor (FGF), and hepatocyte 
growth factor (HGF), PlGF, and MMPs (115, 116). 
Adversely, thrombospondins, endostatin, angiostatin, and 
interleukin (IL)-12 are important endogenous inhibitors of 
angiogenesis (117). Taken together, angiogenesis is 
thought to be involved in the progression and develop-
ment of tumors.

Anti-angiogenesis tumor therapy via interfering with 
VEGF pathway
  Noting to the participation of the angiogenesis process 
in the development of tumors, it seems that the molecules 
involved in the tumor angiogenesis can be targeted as a 
therapeutic strategy. Inhibition or blocking of the growth 
factors or signaling pathways prerequisite for the develop-
ment and progression of ECs is regarded as a logical 
mindset for prevention of tumor vasculogenesis and, there-
fore, tumor repression (113, 118, 119). VEGF is considered 
as an critical angiogenetic factor which is involved in both 
physiological and pathological situations (120). Genetic al-
terations in the VEGF gene have been reported to cause 
defects in the normal development angiogenesis and death 
in the embryonic period (120). Hypoxia inducible factor 
(HIF)-1α, through binding to the VEGF promoter, regu-
lates the expression of VEGF (121). A hypoxic condition 
in various regions of tumors results in the increased ex-
pression of VEGF in tumor niche, leading to an enhanced 
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blood supply and expedited expansion of tumor cells 
(122). Furthermore, VEGF is normally overexpressed in 
the microenvironment of numerous human tumors (123); 
however, VEGF receptors of VEGFR1, VEGFR2, and 
VEGFR3 have been shown to be highly expressed in the 
tumor associated ECs (124, 125).
  The tumor mice model were administered with an mon-
oclonal antibody targeting the VEGF that manifested as 
a remarkable deceleration in the tumor growth (126). 
Bevacizumab is a humanized monoclonal antibody to neu-
tralize VEGF (127), was the first anti-angiogenic mono-
clonal antibody approved by the FDA (Food & Drug 
Administration) in 2003 for the therapy of metastatic col-
orectal cancer patients (128, 129). In addition, the promis-
ing effects of bevacizumab in treating patients with 
non-small cell lung cancer (NSCLC) (130) and metastatic 
breast cancer (131) were established. Upon these success-
ful experiences, some other factors inhibiting the VEGF 
pathway, target either VEGF or its receptor, have been un-
der clinical trial studies. As a soluble receptor of VEGF, 
VEGF-TrapR1R2, which carries the functional parts of the 
VEGFR1 and VEGFR2 (132), has been shown to have the 
ability to neutralize the circulating VEGF and be utilized 
in tumor therapy. In addition, it has been observed that 
VEGF-TrapR1R2 possesses better anti-tumor effects in re-
lation to DC101, which is a VEGF receptor blocker. 
Studies have shown that the inhibition of VEGF signaling 
pathway, through the components that blocks the VEGF 
receptor, are efficiently involved in the repression of the 
tumor progression (133, 134). Receptor tyrosine kinase in-
hibitors (RTKIs), which targets molecules in the VEGF 
signaling pathways, including linifanib (135, 136), cabo-
zantinib (137), axitinib (138), tivozatinib (139), ven-
datanib (140), sunitinib (141), pazopanib (142), and sor-
afenib (143) has been shown to be promising in the treat-
ment of various tumors. In spite of promising effects of 
these therapeutics in the clinical trials, the detailed mech-
anisms underlying their beneficial anti-angiogenic effects 
have not fully been disclosed. Preclinical models have re-
vealed that the inhibition of angiogenesis has been the 
main mechanism of angiogenesis inhibitors that target 
VEGF pathway. That notwithstanding, vascular normal-
ization has also been implicated as another mechanism of 
anti-angiogenetic agents. This mechanism imply to the 
targeting of the non-functional vessels in tumors, that im-
plement positive functions through decreased blood flow 
to the tumor, or efficient drug delivery to the tumor cells 
(144). Therefore, progression in designing agents with po-
tential targeting of VEGF pathway and, therefore sup-
pressing the angiogenesis, provided prosperous ther-

apeutic strategy for tumors that have the potential to be 
further improved in combination with other tools and 
approaches.
  Vascular disrupting agents (VDAs) have been consid-
ered as another class of anti-angiogenetic compounds 
above and beyond the VEGF inhibitors. To implement 
their anti-angiogenic functions to prevent tumor develop-
ment, VDAs cause vascular collapse, manifesting as hypo-
xia, which in turn cause tumor necrosis (145). ASA404 is 
a VDA that has been shown to cause apoptosis in the ECs, 
and, thereupon, diminished blood flow to the tumor cells. 
Clinical studies is currently assessing the efficacy of 
ASA404 in the NSCLC patients (146).

MSCs and Anti-Angiogenic Cancer Therapy

  Angiogenesis is applied by tumors to proceed the proc-
ess of growth (8). Angiogenesis can be inhibited through 
the exertion of MSCs as vehicles to deliver anti-angioge-
netic drugs to the tumors and, therefore, limit the tumor 
progression. Such engendered MSCs have displayed a 
tropism to cancer organs and can deliver anti-angiogenic 
drugs to the tumor sites, while having little adverse effects 
(147). However, it should be noted that a systemic supply 
of anti- angiogenic drugs for a long time may present with 
adverse effects, such as drug toxicity, as well as decreased 
blood supply of the tissues, which in turn results in the 
poor delivery of chemotherapeutic drugs to the target sites 
(148). 
  Dysregulated balance of pro-angiogenic and anti-angio-
genic mediators as well as growth factors in the tumor mi-
croenvironment has been attributed to the tumor-medi-
ated angiogenesis (9, 149). As an endogenous inhibitor of 
angiogenesis in the tumors, endostatin has been exerted 
as an important anti-angiogenic agent in several malig-
nancies (150). In a study, the human placenta-derived 
MSCs were manipulated to deliver endostatin and were 
injected into nude mice. These MSCs, which expressed en-
dostatin, were observed to be resided in the tumor site and 
a significant reduction in the tumor size was reported 
without considerable systemic toxicity and adverse effects. 
The reduced tumor size was reported to be due to in-
creased apoptosis in the tumor cells and blocked angio-
genesis (150). Furthermore, a phase II clinical trial re-
ported that delivery of anti-angiogenic compounds re-
sulted in the correction of the abnormal structure and 
malfunction of the blood vessels, culminating in a remark-
able decrease in the brain edema (151). This correction 
in the vessel structure was reported to be due to decreased 
vessel diameter and permeability (152, 153). Intratumoral 
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administration of MSCs has been shown to be accom-
panied with the residence of these cells in the tumor sites 
and interfering with vasculogenesis, implying to a benefi-
cial potential of MSCs for targeted anti-angiogenic drug 
delivery (154). The genetically-modified human adi-
pose-derived MSCs expressing the interferon γ-induced 
protein 10 kDa (IP-10), which is a powerful chemo-
attractant, in a mouse model of metastatic melanoma re-
sulted in inhibited tumor cell growth and limited angio-
genesis and significantly associated with increased surviv-
al of mice (155). 

The Road ahead toward the Delivery of 
Anti-Angiogenic Inhibitors via MSCs 

  Estrogen, a female sex hormone, has been shown to 
stimulate angiogenesis through acting directly on ECs, as 
well as indirectly on endometrial cells. It has also been 
reported that estrogen triggers the expression of VEGF in 
the uterine stromal cells (156, 157). ER has been estab-
lished as a potential target of various drugs for inhibition 
of the breast cancer progression (158). The ligation of es-
trogen to the estrogen receptor (ER) causes an increased 
proliferation; thereupon, endocrine cancer therapy at-
tempts to prevent the binding of estrogen to the ER and 
block the aftermath signaling. Tamoxifen and raloxifene 
are considered as selective estrogen receptor modulators 
(SERMs) that are competitive inhibitors of estrogen and 
directly bind to ER. Interfering with the estrogen pathway 
has been indicated as an efficient strategy for the therapy 
of hormone responsive breast cancers, while conferring lit-
tle toxic side effects (159). High expression of ERβ has 
been observed in the prostate (160). Implying to the possi-
ble response of prostate cancer to SERMs (161). Moreover, 
promising outcomes have been established about the estro-
gen therapy in the ovarian cancer patients (162). As well, 
the Women’s Health Initiative (WHI) trial indicated that 
estrogen is involved in the colon carcinogenesis (163). As 
a result, with respect to the role of estrogen and ERs in 
the process of angiogenesis and the promising outcomes 
of estrogen/ER pathway blockade, it seems that MSCs can 
be exerted as machine for the targeted delivery of drugs 
that interfere with this pathway. Moreover, monoclonal 
antibodies targeting ERs can be evaluated to inhibit angio-
genesis in the tumor microenvironment. SERMs have 
been attributed with a number of adverse effects in the 
tissues that are not the target of such compounds. Hence, 
strategies for targeting the estrogen/ER pathways needs to 
be optimized to obtain best results. This is a hypothesis 
by the authors, requiring studies in the animal models as 

well as clinical trials to be validated. 
  It has been demonstrated that progesterone prevents the 
proliferation of ECs in vitro and interferes with the cell 
cycle in the human dermal endothelial cells (164). 
Progesterone receptor is expressed on the endometrial ECs 
and may play a role in the suppression of VEGF-induced 
proliferation of ECs (165). Therefore, targeting the proges-
terone pathway through manipulated MSCs seems poten-
tial therapeutic strategy for cancer treatment, a hypothesis 
that needs to be extensively studied.
  The corpus luteum is considered as a temporary endo-
crine tissue in ovaries that are involved in the prosperous 
gestation of mammals. When a follicle undergone the rup-
ture process upon ovulation, the corpus luteum is then 
converted to debris and undergoes a number of mod-
ifications, such as differentiation and growth, which rely 
on the angiogenesis process. It has been reported that 
some endogenous stimulatory and inhibitory compounds 
exist in the corpus luteum to regulate the angiogenesis 
(166). Follicular cells of ovaries produce the pigment epi-
thelium–derived factor (PEDF), which is a physiological 
inhibitor of angiogenesis (167). PEDF possess an anti-an-
giogenic function in the corpus luteum, implying to its 
possible utility as an anti-angiogenesis therapy of cancer 
in the future, probably through delivering via MSCs as 
vehicles.

Challenges in Application of MSC in Cancer 
Therapy

  The therapeutic application of MSCs has been asso-
ciated with multiple challenges that may limit the clinical 
efficacy of this approach. Among the drawbacks in ex-
ertion of MSCs are inappropriate homing of MSCs in the 
body and little accumulation of these cells in the target 
tumor (168). Additionally, MSCs may lose their ther-
apeutic potential, gain immunogenicity properties, and 
obtain tumorigenic characteristics during physiological 
differentiation into mesenchymal lineages (169). It has al-
so been shown that endogenous MSCs are able to produce 
several mediators and activate signaling pathways to pro-
mote the angiogenesis in tumor cells, like colorectal can-
cer (69) and melanoma (170). However, a study analyzed 
clinical 36 trials that used BM-derived MSCs through in-
travascular delivery in different subjects, including graft 
versus host disease, Crohn’s disease, ischemic stroke, car-
diomyopathy, myocardial infarction, and healthy volunteers. 
This study indicated no associationship between the MSCs 
therapy and tumorigenic risk. Moreover, no severe adverse 
effects of the MSC therapy were observed (171). Most of 
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the clinical trials have evaluated the safety and tolerability 
of the MSC therapy in cancers. Nonetheless, the adverse 
effects of MSC therapy in promotion of tumor, instead of 
suppressing it, has little been studied. The tumorigenic 
evaluation of MSC therapy needs long time follow-up of 
the patients, as carcinogenesis is a gradual process. 

Concluding Remarks

  Several beneficial properties have been proposed for 
MSCs that make them appropriate candidates for 
cell-based therapeutic tool in cancer therapy. First, MSCs 
are able to mobilize and preferentially home in tumor tis-
sues and interact with various cells present in tumor 
microenvironment. Furthermore, MSCs are easily avail-
able, have no or little immunogenic features, can be sim-
ply manipulated in vitro. Little have been surveyed with 
respect to the preclinical evaluation of the MSC potential 
to be exerted as vehicles to locally deliver/express a single 
therapeutic compound in cancers. Despite a promising ex-
perience in the promoted survival of cancer cases through 
anti-angiogenic therapy, the pooled findings testify a lim-
ited overall survival improvement (172, 173). These limi-
tations stem from several issues. First, tumor micro-
environment may exert mechanisms to resist against an-
ti-angiogenetic molecules and, therefore, limit the efficacy 
of such therapeutics (174). Second, anti-angiogenetic drugs 
may develop vascular collapse that may result in a hypoxic 
state, which in turn may result in radio-resistance, che-
mo-resistance and anti-angiogenesis resistance (175, 176). 
These adverse effects may culminate in tumor metastasis 
and, therefore, negatively impress the clinical exertion of 
anti-angiogenic drugs. In spite of an improvement in our 
knowledge of MSCs in recent years, little has been at-
tempted with respect to the employment of these cells to 
downmodulate the angiogenesis in the clinics. Therefore, 
filling this gape requires developing state-of-the- art tech-
nologies and new concepts in exertion of anti-angiogenic 
compounds conferring little side effects. To attain this 
end, engineering MSCs to specifically deliver the angio-
genesis inhibitors could be still promising, particularly 
when combined with other therapeutics and targeting oth-
er pathways simultaneously. As well, searching for novel 
molecular targets to diminish the angiogenesis could be 
a part of answer to this gap.
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