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ABSTRACT: 

The outbreak of a newly identified coronavirus, the SARS-CoV2, (alternative name 2019-

nCoV), capable of jumping across species causing zoonosis with severe acute respiratory 

syndromes (SARS) has alerted authorities worldwide. Soon after the epidemic in Wuhan, 

Hubei province of China starting with late December 2019, the virus has spread over multiple 

countries in different continents being declared a pandemic by March 2020. The demographic 

characteristics of the infected patients suggest that patient’s age, sex and comorbidities are 

predictive factors for the fatality of the infection. The mechanisms of viral entry into the 

human host cells seem to be in a close relationship with the mechanisms of regulating the 

renin-angiotensin system (RAS) which may explain the pathogenesis associated with the 

infection. This brings new insights on the possibilities of exploiting viral entry mechanisms to 

limit associated complications by means of enhancing the resistance of the infected patients 

using methods of regulating the RAS and strategies of modulating ACE2 expression. In this 

perspective article we exploit the mechanisms of COVID-19 pathogenesis based on the 

demographic characteristics of the infected patients reported in the recent literature and 

explore several approaches of limiting the initial steps of viral entry and pathogenesis based 

on viral interactions with ACE2 and RAS. We further discuss the implications of 

reproductive hormones in the regulation of the RAS and exploit the premises of using 

endocrine therapy against COVID-19. 

 

Keywords: SARS-CoV2; 2019-nCoV; Covid-19; endocrine therapy; ACE2; ARBs; 

mineralocorticoid receptor antagonist; ADAM-17; miRNA. 
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Introduction 

Coronaviruses are a large family of RNA viruses belonging to the Coronavirinae 

subfamily. Together with the Torovirinae, they constitute the Coronaviridae family in the 

order of Nidovirales. The first member of the family of coronaviruses was described in 1932 

in birds1; since the severe acute respiratory syndrome (SARS) outbreak in 2002-2003, new 

family members have been defined, highlighting the capabilities of coronaviruses to jump 

across species. They are enveloped RNA viruses with the longest RNA genome amongst all 

RNA viruses consisting of 26.2-31.7 Kb.  They are constituted of 4 genera (alpha, beta, 

gamma and delta - coronaviruses) out of which 2 (alpha and beta) contain the 7 subspecies 

that were known to be capable of infecting both animals and human hosts causing zoonosis. 

These are 229E-CoV, OC43-CoV, NL63-CoV, HKU1-CoV 2 the human enteric HECoV3, the 

SARS coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus 

(MERS-CoV). While most subspecies produce symptoms of common cold and enteritis, 

SARS-CoV and MERS-CoV are capable of causing important respiratory syndromes that in 

some cases can prove lethal. 4 

Infection of the host cells by coronaviruses relies on the interaction of the viral particle 

with specific proteins on the cell surface. Interactions between the virus and host cells are 

initiated following the binding of the spike proteins with host cell receptors. Spikes are 

surface proteins of the envelope that give the crown-like appearance to the virus from where 

its name derives. Coronaviruses and other budding viruses exploit the replicative machinery 

of host cells 5, shielded from host immune responses in double membrane vesicles 6 7. By 

budding through exocytosis for their egress, rather than inducing lysis or apoptosis and 

proinflammatory cytokine release, they aim to produce long-lasting infections with reduced 

associated pathogenesis. This is how they account for 15-30% of the annual common colds 

with mild symptoms, only occasionally affecting the lower respiratory tract 8 9. However 

much of the pathogenesis of SARS-CoV-2 seems to be related to the cytokine storm resulting 

from the excessive activation of adaptive immune responses in vital organs and from 

dysregulation of the renin-angiotensin system (RAS) 10 11. The adaptation to infect the human 

host cells by exploiting the angiotensin-converting enzyme 2 (ACE2) receptor in SARS-CoV 

and SARS-CoV-2 was not without consequences as this has led to increased pathogenesis by 

disrupting RAS regulation through the antagonization of ACE2. This is because ACE2 is a 

part of the depressor arm of the RAS, and accounts for counteracting vasoconstriction, 

proliferation, oxidative stress, fibrosis and pathogenesis of cardiovascular disease (CVD), all 
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effects of the pressor arm 12. Disruption of the depressor arm, the ACE2/Ang-(1-7)/MasR and 

AT2R will lead to exacerbation of the effects of the pressor arm, the ACE/AngII/AT1R 

pathway, which seems to be responsible for the decompensation of pre-existent comorbidities 

in coronavirus disease 2019 (COVID-19) patients where the highest fatality is reported 13. 

The resulting Ang-II increased levels will lead to cell apoptosis with the release of 

proinflammatory cytokines 14. This stimulates adaptive immune responses with the possibility 

of triggering a cytokine storm from its excessive activation.15 

 

The newly identified coronavirus SARS-CoV2 

On January 7, 2020, following a recent outbreak of a new type of a highly contagious 

coronavirus,16 the 8th subspecies of human infecting coronaviruses was described and 

characterized while a test method was developed.17 It  was initially named 2019-nCoV18 and 

later SARS-CoV-2. In a relatively short interval of two months, the outbreak turned into an 

epidemic which spread over several countries and continents infecting more than 100.000 

individuals by March 7, 2020.19 On March 11, 2020 the outbreak was officially declared as a 

pandemic by the World Health Organization (WHO),20 infecting almost four and a half 

million people at the time of the writing of this manuscript. 21 

The SARS-CoV-2, although distinct from its cousins MERS-CoV and SARS-CoV, it is 

part of the same betacoronavirus genre and sarbecovirus subgenre with SARS-CoV but from 

a related subgenre with MERS-CoV, which is part of the Merbecovirus.22  Although the 

disease caused by the SARS-CoV-2 may be less severe than SARS and MERS, it seems more 

contagious having a death toll already 180 times higher than SARS and MERS epidemics 

combined.21 

Coronaviruses are able to exploit many cell surface molecules—proteins and 

carbohydrates alike - in order to gain entry into target cells. Three receptors on the human 

cells have been shown to interact with the viral spike proteins that enable its fusion and 

incorporation within the host, and these include Aminopeptidase-N, ACE2 and Neu 5.9 AC2. 

While Aminopeptidase-N is the receptor used by the human coronavirus 229E-CoV,23 the 

sialic acid Neu5.9 AC2 is the preferred receptor for the human OC43-CoV. Angiotensin 

converting enzyme 2 (ACE2), a type I integral membrane protein largely distributed in the 

vasculature, the endothelial cells of the heart and kidneys, brain and lungs 24 25 is the 

preferred receptor for NL36-CoV, SARS-CoV and the new SARS-CoV-2, while MERS-CoV 
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uses a different receptor, DDP4 (Figure 1).26 This distribution of the ACE2 in key organs 

might explain how patients with pre-existent cardiovascular system pathologies may be more 

susceptible to severe complications caused by the coronaviruses that use ACE2 to fuse with 

the human host cells, disrupting the physiological regulation of the RAS. 

 

Implications of ACE2 in the RAS regulation 

The receptor used by the SARS-CoV-2 to infect human cells, ACE2, is an important 

component in the regulation of RAS, as it is part of the counteracting arm against the 

vasopressor pathway, the ACE2/Ang1-7/MasR and AT2R. Accumulating evidence shows that 

the RAS is regulated differently in women and men, the androgens and estrogens having 

different effects on the regulator arms of the RAS. Such differences allow the adaptation to 

increased total blood volume during pregnancy and confer a considerable degree of 

protection from cardiovascular disease in premenopausal women as compared to age-related 

men. This is done through the protecting arm of the RAS pathway, ACE2/Ang1-7/MasR and 

AT2R which counteracts the vasopressor effects of the ACE/Ang II/AT1R axis. In men, the 

ACE/Ang II/At1R is predominant. 27 This might at least in part, explain how lethality is lower 

in women than age related men and how exacerbation of pre-existent cardiovascular 

pathologies increased lethality. Although these observations rely mostly on indirect evidence, 

competitive mechanism may exist between RAS regulation through ACE2 and mechanisms 

of viral entry into the human host cells since antagonizing ACE2 by the virus is associated 

with exacerbation of the effects of the pressor arm - the ACE/Ang II/AT1R axis. 

In 2000 a new form of ACE was described, the ACE2 28 29 first characterized by 

Crackower et al. 2002, 30 involved in heart function and development of arterial hypertension. 

ACE and ACE2 have similar protein structures with small differences, which lead to different 

substrate specificities. ACE is the enzyme present in the lungs responsible for converting 

Angiotensin I to Angiotensin II with vasopressor effects; ACE2 has been shown to exert 

counteracting effects on ACE action by inhibiting RAS through converting Angiotensin I to 

Angiotensin 1-9 which is further converted to Angiotensin 1-7 by the ACE. ACE and ACE2 

are thus functionally different enzymes with opposite roles.31 SARS-CoV2 spike glycoprotein 

binds to the cell membrane ACE2 to penetrate human cells.  Further research confirmed the 

presence of ACE2 in the lung, heart, kidney and vessel endothelium. 32-34  Zhao et al. showed 

that 83% of ACE 2 expressing cells are alveolar epithelial, therefore the lungs appear the 
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most vulnerable target SARS-COV-235 while the heart, kidney and central nervous system36 

are the second most affected organs by the viral burden. It has been demonstrated that the 

binding of the SARS-CoV-2 spike protein to ACE2 leads to ACE2 downregulation, which 

results in excessive production of Angiotensin II by the related enzyme ACE, while ACE2 is 

not capable of converting Angiotensin I to Angiotensin 1–7. This results in increased 

pulmonary vascular permeability, lung and heart injury.37 The large distribution of ACE2 to 

other organs could explain the end-stage multi-organ dysfunction in severely infected patients 

38 11 39 including neurologic manifestations.36 

A China CDC weekly report through February 11, 2020 has revealed the results of the 

demographic characteristics from 72,314 patient records admitted for the new coronavirus 

infection (COVID-19). Reported fatality in men was higher than in women (2.8 vs 1.7%), 

high age and underlying cardiovascular pathologies being associated with increased fatality. 

Furthermore, synthetic datasets generated from this report showed that older women had a 

similar fatality with age-related men, making it possible for some sex hormone influences to 

affect the viral entry and pathogenesis explaining some of the sex/age/associated pathology 

differences in lethality and morbidity. The datasets created from this report suggest that 

patient’s high age was the most important risk factor of lethality from the disease, even 

greater than having any of the listed comorbidities.13 These data relies mostly of indirect 

evidence since there is neither information about the correct prevalence of gender per age nor 

about comorbidities per age and gender in the CDC report. 11 At the current time, the reported 

sex ratio for the fatality men and women is still 1.6, but with higher fatality rates reported for 

men (4% in men and 2.5% in women)40 

 

Differences in RAS regulation between men and women 

Several lines of evidence show that intracellular RAS can operate independently of the 

circulating RAS and there is a close interaction between sex hormones and RAS regulation. 

Estrogens have been known to provide protective effects by modulating the RAS. One study 

on endothelial cells showed that physiological levels of estradiol increased ACE1 by 25% but 

not ACE2 protein expression in vitro through the estrogen receptor alpha (ERα). The same 

study showed that while ACE2 protein expression remained unmodified following estradiol 

exposure, the enzymatic activity of both ACE1 and ACE2 increased. Alternatively, the 

translation of ACE2 mRNA on protein could be down-regulated by estradiol, directly due to 
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increased ACE2 activity of increased Ang-(1-7) production. The increased activity of ACE2 

without increased protein expression could be due to a direct estradiol-induced ACE2 

activity, but an indirect activation could not be infirmed 41.  

Differences between men and women in RAS regulation could be attributed to a higher 

stimulation of ACE activity by androgens, as it has been demonstrated in male mice42,in 

which testosterone increases ACE activity, and also in women with hyperandrogenism from 

polycystic ovary syndrome.43 This is further supported by sex differences in the regulation of 

arterial pressure and renal function by the RAS44 with the balance tipped toward depressor 

pathways in women45. Moreover, women are protected against cardiovascular disease relative 

to men, prior to menopause. 46 Androgens are known to be involved in the sex differences in 

the regulation of arterial pressure, with estrogen protecting against and testosterone 

exacerbating hypertension.44 In the last two decades a special interest has been redirected 

towards the RAS with the discovery of additional receptors specific for angiotensin peptide 

fragments, suggesting the presence of a depressor arm of the RAS (ACE2/Ang(1-7)/ MasR 

and AT2R), which counter-regulates the classical ACE/ AngII/AT1R pathway12. 

Sex differences have been demonstrated in the regulation of blood pressure and renal 

function by the RAS. Significantly, the counter-regulatory arm of the RAS, including 

ACE2/Ang(1-7)/MasR and AT2R, is upregulated in females.27 Estrogen regulates all 

components of the RAS by increasing angiotensinogen synthesis, while reducing the 

secretion of renin and synthesis of ACE.47 In males, testosterone amplifies the pressor 

pathways of the RAS.48 Regarding genetic sex differences, the SRY gene family, located on 

the Y chromosome in men, decreases promoter activity of ACE2 while upregulating 

promoter activity of ACE, angiotensinogen and renin respectively.49 In addition, both the 

AT2R and ACE2 genes are located on the X chromosome, suggesting a greater role of these 

depressor RAS arm components in females.  In males, the ACE/ AngII/AT1R pathways are 

enhanced, whereas, in females, the balance is shifted towards the ACE2/Ang (1-7)/MasR and 

AT2R pathways. Evidence shows that premenopausal women are at lower risk of developing 

cardiovascular and renal disease as compared to aged-matched men, and this differential 

regulation of the RAS between men and women likely has an important contribution. This 

cardiovascular protection in women lowers with reaching menopause and reaches the same 

incidence as seen in age-related men, likely being related to loss of estrogen in 

postmenopausal period. However, the mortality gender difference for COVID-19 is far more 
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outspoken than the gender difference in the occurrence of CVD. This creates the premises of 

using endocrine therapy for the management of COVID-19.  

 

Strategies of limiting viral entry into the human host cells and associated pathogenesis 

Several potential strategies of inhibiting viral entry into the human host cells to reduce 

lethality and associated morbidity are worth pursuing based on the ACE2 interaction with the 

SARS-CoV-2 spike proteins (Figure 2).  

 

Endocrine therapy in COVID-19 

Regulation of the ACE2 could be attempted by several strategies, used alone or in 

combination. Endocrine therapy may prove useful in modulating ACE2 expression and 

regulating RAS in men and women. Androgen deprivation therapy (ADT) could potentially 

shift the RAS regulation towards the ACE2/Ang1-7/MasR and AT2R pathway in order to 

achieve a reduced lethality in men, at least to the extent reported in premenopausal women. 

To date, there is no study evaluating the effect of reproductive hormones and their effects on 

the infectious cycle of the SARS-CoV-2. This represents a direction worth pursuing since 

reproductive hormones (estrogen 1microgram/ml and testosterone 3micrograms/ml) were 

found to enhance the replication of the avian coronavirus in vitro, while progesterone had no 

effect. The same study found an enhancing effect of cortisone 3micrograms/mL on the 

replication of the avian coronavirus.50 Another study on avian coronavirus has shown that the 

adaptive immune response and cytokine activity was enhanced probably due to the effect of 

estrogens, in vitro.51 In SARS-CoV and MERS-CoV, estrogen receptor inhibitors were shown 

to be active against the infection in vitro.52 However an in vivo mouse model showed that the 

severity of SARS is associated with enhanced accumulation of macrophages and neutrophils 

in the lungs leading to vascular leakage and alveolar edema, and male mice had an increased 

susceptibility to these complications, independently of B and T cell response. Furthermore, 

ovariectomy or treating female mice with estrogen receptor antagonists increased their 

lethality from SARS-CoV.53 Together, these findings show that gender differences in the 

severity to SARS-CoV in murine models parallel those reported in patients and support the 

hypothesis of estrogen receptor signalling as protective against COVID-19 in women. 

Although this may in part explain the reduced fatality from COVID-19 in premenopausal 

women, the implications of reproductive hormones in the pathogenesis of COVID-19 are 
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even more compelling. Androgens have been shown to be a positive regulator of TMPRSS2 

protease 54. In lungs, TMPRSS2 (epitheliasin) is required for the activation of the spike viral 

protein for viral internalization and activation of the fusion peptide (Figure 3), with 

alternative fusogenic mechanisms including furins, cathepsins and other trypsin-like 

proteases, accounting for potential therapeutical targets in COVID-19 55-58.  

The coding gene for the pulmonary epitheliasin is upregulated by androgen exposure, 

together with other genes involved in viral pathogenic mechanisms such as phospholipid 

metabolism, iron ion binding, oxygen binding, heme binding and clathrin-coated vesicle, and 

this was demonstrated in vitro on a culture of human lung adenocarcinoma-derived cell line -

A549 59. The responsiveness of TMPRSS2 gene to androgen stimulation was also reported in 

vivo in mice and patient data correlated with these observations 60 while the implications of 

sex hormones in the immune response has been well documented 61. Moreover, the protective 

effects of anti-androgens in SARS-CoV-2 infected patients was seen in an observational 

Italian study62.  

Based on these effects, androgen deprivation therapy (ADT), despite it’s the most well 

recognized but reversible side effects including hot flashes, loss of libido and erectile 

dysfunction, could potentially be beneficial for reducing lethality in men, as well as women 

with hyperandrogenism from polycystic ovary syndrome 43. While ADT represents an 

accessible option for aiding the treatment of COVID-19, a premise for its use should be the 

validation of these effects in controlled clinical trials including men, women and even 

transgender patients on endocrine therapy. 

Several ongoing clinical trials are currently investigating the interactions of 

corticosteroid hormone derivatives in COVID-19 such as methylprednisolone 

(NCT04263402; NCT04323592; NCT04244591), dexamethasone (NCT04263402; 

NCT04325061), budesonide and formoterol (NCT04331470), while there are no clinical 

trials evaluating reproductive hormones in COVID-19. Testing endocrine therapy against 

SARS-CoV-2 could represent a close perspective. Nevertheless, several other strategies that 

can modulate the RAS and ACE2 expression are worth mentioning. The usage of 

recombinant ACE263 could benefit COVID-19 patients since ACE2 may bind SARS-CoV-2 

spike protein in the plasma before reaching other cells, turning spike incapable of binding 

other membrane ACE2, thus avoiding internalization of the virus into cells. This is currently 

being evaluated in several clinical trials. (NCT04335136; NCT04287686)  
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RAS blockers in COVID-19 

While using ACE inhibitor drugs that lower blood pressure may seem a good approach to 

reduce the viral entry into the host, some of them are most likely not useful as treatment for 

COVID-19. Perindopril has little or no effect on ACE2.64 Captopril, Enalapril, Lisinopril 

block ACE but not ACE2 and may be counterproductive. It is not clear if ACE inhibitors 

should be switched to another hypotensive drugs. 65-67 Knocking down the coding gene of 

ACE2 may seem as a proper approach to blocking viral entry into the host cells, but this was 

shown in animal models to severely impair heart function.30 However angiotensin receptor 

blockers (ARB) as well as mineralocorticoid receptor antagonists (e.g. spironolactone), 

increase both ACE2 levels and Ang (1-7) levels.68 69 There is sufficient data showing that 

ARB treatment results in ACEs upregulation in humans and rats: losartan and olmesartan, 

were demonstrated to increase cardiac ACE2 expression three-fold following 1 month 

treatment after myocardial infarction in rats.70 Losartan was also demonstrated to upregulate 

renal ACE2 expression in mice.71 Olmesartan used in patients with hypertension induced 

high urinary ACE2 levels72.  Therefore, higher ACE2 expression after treatment with ARBs, 

while seeming paradoxical, might protect against lung and heart injury. This may be the 

result of blocking the excessive angiotensin caused by the SARS-CoV infection, as well as, 

most importantly, upregulating ACE2, with increased production of Angiotensin 1–7. 73 A 

recent article suggested that ARBs might be beneficial for patients infected with SARS-CoV-

2.74 Several ongoing clinical trials are currently investigating the impact of RAS inhibitors in 

COVID-19 (NCT04335123; NCT04337190; NCT04331574; NCT04330300; NCT04312009; 

NCT04311177; NCT04335786) and look for arguments to continue or discontinue RAS 

inhibitors (NCT04338009). A possible way of treatment which would likely be resistant to 

SARS-CoV-2 mutations is to use available ARBs, such as losartan, telmisartan and 

olmesartan for reducing the binding of the virus to ACE2 and decrease aggressiveness and 

mortality from virus infections.75 However, drugs that interfere with the regulation of the 

counteracting arm of the RAS directly or indirectly, have been shown to induce an increase in 

ACE2 expression and this was observed for ARBs,76 70 statins, 77-80 and the propionate 

derivative ibuprofen81 in preclinical studies. Whether this increase is detrimental due to 

increasing binding sites for the virus or actually beneficial being part of the mechanisms of 

reducing the deletary effects of the pressor arm of RAS, remains elusive and requires further 

investigations. A recently published analysis found no association between ARBs or ACEI 

use and COVID-19 test positivity in a cohort of 18,472 patients tested for COVID-19 in a 
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single healthcare system82. In the absence of clinical evidence to the contrary, clinical 

consensus is to advise patients not to discontinue ACE inhibitors or ARBs in the setting of 

the COVID-19 pandemic66 83. 

 

Other strategies of inhibiting viral entry in COVID-19 

Other strategies of reducing ACE2 include ADAM metallopeptidase domain 17 

(ADAM17) also known as TACE (tumor necrosis factor-α-converting enzyme) capable of 

shedding ACE2 from the cells through AngII84 and miRNAs capable of regulating ACE2 

expression in the lungs (miR-200c-3p85, miR-2186 miR-42187) while restoration of these RAS 

depressor pathways in older women or upregulation of these in males and females by gene 

therapy using adenoviruses for blocking angiotensin receptors could represent a therapeutic 

intervention to assist the treatment of SARS-CoV2 infected patients. Using such strategies 

could be followed by a destabilization of the blood pressure and should be done under 

specialized cardiologic observation.  

An efficient active immunotherapy (vaccination) would be the cornerstone against 

COVID-19 but it could take many months to develop. This may also be limited in efficacy, or 

even prove ineffective since viral antigens can regularly change with adaptation mechanisms. 

Moreover, pre-existent antibodies from a recovered infection or vaccination may 

progressively fade away88 89 or may not exert sufficient protection against re-exposure to 

human infecting coronaviruses as shown in the studies of the SARS-CoV and MERS-CoV.90 

91 Passive immunotherapy with monoclonal antibodies against antigens  of the spike protein 

could represent a closer perspective and this was previously achieved in SARS-CoV in 

vitro92. 

Other treatment options in COVID-19 are under evaluation and while preliminary results 

seemed promising with antimalarials 93 and replicase inhibitors 94 several recent studies failed 

to show clinical benefits 95 96 emphasizing the need of evaluating other potential therapeutic 

strategies against SARS-CoV-2.   

 

Conclusions 

While we may assert that there are multiple potential strategies against the early steps of 

viral entry into the human host cells and the pathogenesis associated with the dysregulation of 
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the RAS, evaluation of the effects of such agents in big cohorts is required to validate their 

efficacy in COVID-19. Drug repurposing can prove beneficial in controlling the extent of the 

disease while a specific treatment is being developed and exploiting endocrine therapy 

against SARS-CoV-2 could represent a unique approach, which is worth pursuing given the 

rapid spread of the pandemic. However, drug combinations may prove more effective than 

single agents and combining endocrine therapy with other strategies of inhibiting viral entry 

could represent a close perspective in the current pandemic as active immunization might 

require many months before being accomplished and readily available worldwide. 
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FIGURES’ LEGENDS: 

Figure 1. Schematic representation of the binding site for SARS-CoV2. Spike 

glycoproteins S on the viral surface bind to ACE2 on human cell surface, leading to 

internalization of the virus into the host cell. 

Figure 2. Competitive mechanisms involving viral entry into host cells and RAS 

regulation through ACE2. Physiological mechanisms of regulating the renin-angiotensin 

system involve the pressor pathway (ACE/Ang II/AT1R) and the counteracting arm – the 

depressor pathway (ACE2/Ang 1-7/MasR and AT2R). The new coronavirus (SARS-CoV2) 

exploits ACE2 to ensure viral entry into host cells, antagonizing the counteracting arm of the 

RAS system. This leads to complications associated with exacerbation of the ACE/Ang-

II/AT1R axis as it`s been observed in the pathogenesis of the COVID-19. Possible strategies 

of limiting viral entry and pathogenesis involve modulating ACE2 expression and regulating 

the counteracting arm of the RAS system shifting the balance towards the ACE2/Ang 1-

7/MasR and AT2R axis. 

Figure 3. Schematic representation of the mechanism of viral entry into the lung cells by 

exploiting ACE2 and epitheliasin (TMPRSS2). SARS-CoV2 enters the lung cells 

following the binding with the ACE2 and the activation of the fusion peptide in the spike 

protein by the membrane protease TMPRSS2. Androgen deprivation therapy decreases 

TMPRSS2 expression inhibiting the mechanisms of exploiting epitheliasin for the activation 

of the Spike. 
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