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ABSTRACT:
This study aimed to develop an artificial intelligence (AI)-based tool for screening COVID-19 patients based on the

acoustic parameters of their voices. Twenty-five acoustic parameters were extracted from voice samples of 203

COVID-19 patients and 171 healthy individuals who produced a sustained vowel, i.e., /a/, as long as they could after

a deep breath. The selected acoustic parameters were from different categories including fundamental frequency and

its perturbation, harmonicity, vocal tract function, airflow sufficiency, and periodicity. After the feature extraction,

different machine learning methods were tested. A leave-one-subject-out validation scheme was used to tune the

hyper-parameters and record the test set results. Then the models were compared based on their accuracy, precision,

recall, and F1-score. Based on accuracy (89.71%), recall (91.63%), and F1-score (90.62%), the best model was the

feedforward neural network (FFNN). Its precision function (89.63%) was a bit lower than the logistic regression

(90.17%). Based on these results and confusion matrices, the FFNN model was employed in the software. This

screening tool could be practically used at home and public places to ensure the health of each individual’s respira-

tory system. If there are any related abnormalities in the test taker’s voice, the tool recommends that they seek a

medical consultant. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006104

(Received 29 March 2021; revised 13 August 2021; accepted 16 August 2021; published online 16 September 2021)
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I. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), which causes COVID-19, is a new type of

virus that emerged in Wuhan City, Hubei Province in China,

in late December 2019 (Lai et al., 2020). Since then, the dis-

ease has quickly become a pandemic, killing more than

2.6 million people to date (March 2021) (Worldometer,

2021). COVID-19 is more commonly known as a respira-

tory illness that transmits through the air and physical con-

tact and penetrates into the respiratory cells by bonding to

angiotensin-converting enzyme 2 (ACE2) (Falahi and

Kenarkoohi, 2020; Ni et al., 2020). The most common

symptoms of the virus include shortness of breath, fever,

loss of smell and taste, headache, muscle ache, and cough

(Chen et al., 2020; Wang et al., 2020a). The virus is often

characterized by specific dysfunction in the respiratory

physiology, including the diaphragm and other parts of the

lower respiratory tract, thus affecting breathing patterns dur-

ing inhalation and exhalation of air from the lungs (WHO,

2020). According to many studies, including Osuchowski

et al. (2021), McGonagle et al. (2021), and Gattinoni et al.
(2020), COVID-19 has a special and distinct pathophysiol-

ogy from influenza, other non-COVID-19-related acute

respiratory distress syndrome (ARDS), and other coronavi-

rus infections (Gattinoni et al., 2020; McGonagle et al.,
2021; Osuchowski et al., 2021).

Due to the pandemic, the question “Do I have COVID-

19?” often comes to mind after any cough or unusual feeling

in the chest or throat. According to the guidelines of the

World Health Organization (WHO), nucleic acid-based real

time reverse transcription polymerase chain reaction

(RT-PCR) is the gold standard method to find COVID-19

positive cases. It is certainly not possible to go to medical

centers and perform RT-PCR or chest computed tomo-

graphic (CT) scan after every cough or unusual feeling due

to the high cost and limited access to the tests as well as the

possibility of exposing healthcare professionals and medical

staffs to the risk of contracting the virus (Feng et al., 2020;

Udugama et al., 2020). Therefore, developing a new acces-

sible and non-invasive approach for screening the disease

with higher accuracy is important and can reduce unneces-

sary worries and prompt the person to take necessary

measures.

The respiratory system responsible for providing oxy-

gen to the body is also considered the vocal apparatus’s

energy generator for phonation production. The exhaled air

a)This paper is part of a special issue on COVID-19 Pandemic Acoustic

Effects.
b)ORCID: 0000-0002-1678-7608.
c)Electronic mail: nourbakhsh@alzahra.ac.ir, ORCID: 0000-0003-2554-
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from lungs maintains subglottalic pressure for the phonatory

task. Lung involvement in COVID-19 reduces the pulmonic

airflow, and this could cause phonation problems. As

reported by Parasher (2021), about one-fifth of all COVID-

19 patients have lower respiratory tract involvement that

could progress to ARDS.

Speech sound waves are indeed variations in the air

pressure produced by the vocal apparatus’s different move-

ments (Zhang, 2016). The air stream coming out of the lungs

through the trachea provides the necessary energy for

speech sounds. The vocal folds located within the larynx

may assume different positions, each of which affects the air

stream in a different way (Dromey et al., 2002). The laryn-

geal sound source is created when the adducted vocal folds

start vibrating. This laryngeal sound source will then pass

through the vocal tract resonators (i.e., all the cavities above

the larynx, including the pharynx, mouth, and nose) and is

modified and amplified (filtered) by them (Gracco and

Lofqvist, 1994). Needless to say, each variation in the shape

and function of each organ in the vocal apparatus is reflected

in the speech sounds.

Inflammation, edema, or damage to the vocal folds as a

cause of infection, coughs, gag syndrome, or the acidity of

vomiting materials could affect the function of the larynx,

which is directly reflected in the sound waves (Takahashi

and Koike, 1976; Oguz et al., 2007; Watts and Awan, 2015;

Karlsen et al., 2020). Similarly, tonsillitis and nasal conges-

tion also cause a difference in the shape of the vocal tract

that results in variations in the acoustic features of speech

sounds. Moreover, an infection or lung injury brings about

deviations in the aerodynamic and acoustic features of

speech sound waves. Thus, a person with COVID-19 infec-

tion not only suffers from shortness of breath, but also has

difficulty exhaling, which leads to lack of energy to produce

sound and disruption to the speech production cycle as well.

In a recent study, Asiaee et al. (2020) reported signifi-

cant differences in many acoustic parameters, including

cepstral peak prominence (CPP), harmonic-to-noise ratio

(HNR), the amplitude of the first and second harmonics

(H1-H2), fundamental frequency (F0) variation [F0 standard

deviation (SD)], maximum phonation time (MPT), and per-

turbation measures of pitch (jitter) and amplitude (shimmer)

between COVID-19 patients and healthy individuals.

Quatieri et al. (2020) showed that changes in vocal patterns

could be a potential biomarker for COVID-19 due to the

coordination of subsystems of speech production involving

respiration, phonation, and articulation. A study conducted

by Bartl-Pokorny et al. (2021) compared 88 acoustic fea-

tures extracted from recordings of the vowels /i:/, /e:/, /o:/,

/u:/, and /a:/ produced by 11 symptomatic COVID-19 posi-

tive and 11 COVID-19 negative German-speaking partici-

pants. Their results revealed significant differences in the

mean voiced segment length and the number of voiced seg-

ments per second during phonation in COVID-19 positive

participants compared to healthy individuals. Since these

findings confirmed the significant differences in acoustic

parameters of voice between COVID-19 patients and healthy

individuals, it is plausible to employ artificial intelligence

(AI) as a low-cost, accessible, fast, and non-invasive diagno-

sis and screening tool to detect COVID-19. These distinctive

features can be extracted by appropriate signal processing

and mathematical conversion and used to train a sophisti-

cated AI engine to make the initial diagnosis of COVID-19

based on voice quality parameters. AI studies and develops

methods that simulate human intelligence (Tayarani, 2021).

It reduces the workload required in traditional statistics by

screening the data and extracting its important attributes.

Few AI-based studies have been done on the automatic

detection of COVID-19, most of which have used x rays

(Jain et al., 2020; Ozturk et al., 2020; Wang et al., 2020b;

Saha et al., 2021) or CT scans (Harmon et al., 2020; Li

et al., 2020). Although these methods (i.e., x rays and CT

scans) offer higher sensitivities than the proposed

approaches, but both of these methods still require referral

to well-equipped clinical centers. A study conducted by

Imran et al. (2020) used a convolutional neural network

(CNN) to introduce a new application to perform direct

COVID-19 diagnostics based on cough sounds. Moreover,

Mouawad et al. (2021) showed the robustness of mel-

frequency cepstral coefficient (MFCC) features for auto-

matic detection of COVID-19 through cough and sustained

vowel, respectively. A small portion of studies on COVID-

19 have focused on machine learning (ML)-based voice

quality, a topic that has recently come under the scrutiny of

researchers. In a study by Han et al. (2020), speech record-

ings from COVID-19 patients are analyzed to categorize

automatically the health state of patients from four aspects,

namely, severity of illness, sleep quality, fatigue, and anxi-

ety. In addition, an article by Brown et al. (2020) analyzed a

large dataset of respiratory resources collected to aid diag-

nosis of COVID-19. They used coughing and breathing to

distinguish between the sounds of COVID-19 from those

with asthma or healthy people. The results showed that the

classifier was able to classify healthy and COVID-19 sounds

using the binary ML classifier and achieved an area under

the curve (AUC) of 80% across all tasks. Biswas et al.
(2020) used cough and vowel /a/ samples to investigate the

possibility of using intelligent speech analysis to identify

COVID-19 in individuals with and without the coronavirus.

Shimon et al. (2021) used cough and vowel /a/ samples to

investigate the possibility of using intelligent speech analy-

sis for the identification of COVID-19 in individuals with

and without the coronavirus. They developed audio-

symptomatic models to automatically discriminate between

COVID-19 patients and healthy individuals and reported an

average of 80% accuracy in detecting the disease based on

analyzing coughs and the vowel and 83% accuracy based on

the symptomatic questions. In the above-noted studies, dif-

ferent inputs such as sustained vowels, coughing, breathing,

and running speech were used. However, in this study, sus-

tained vowel /a/ is used as the input. The rationale behind

choosing this type of input is as follows.

Many COVID-19 patients experience respiratory illness

(Guan et al., 2020). Respiratory complications of this
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disease can affect the volume of the lungs and the proper

function of vocal cords. During sustained phonation, the F0

perturbation, regularity of vibration, and the harmonicity of

sound waves could be measured. However, the glottal

abduction, which is followed by a sudden burst in the cough

production, makes the measurements of these parameters

inaccurate and unreliable. During breathing, there is not any

vibration in the vocal folds, so in this case too, the above-

noted parameters could not be considered. Meanwhile, lung

involvement is another complication caused by COVID-19

that usually results in shortness of breath because of a

decrease in the lung volume. Using sustained phonation, the

duration of phonation, an important parameter that repre-

sents the lung volume, can be studied as well; this cannot be

examined in other forms of data including running speech.

Moreover, the vowel /a/ is found in most languages of the

world, and if a language has a vowel system with either two

or three vowels, one of them is /a/ (Maddieson and Disner,

1984; Maddieson and Precoda, 1989; Maddieson et al.,
2014). It also has been used as the only sound in many

voice-related studies.

In designing an application, it is very important to make

it user-friendly. Considering different vowels just makes it

difficult and time-consuming for users since there is not

much difference in vocal cord function in articulating differ-

ent vowels. Everybody can use this application from any

language whether they are literate or illiterate. Running

speech requires individuals to have the ability to read a text

in the target language.

In this research, we introduce an AI-based tool that

assesses whether any respiratory symptoms related to

COVID-19 are detected in an individual’s voice solely

based on the result of their voice analysis. Therefore, we

used the signals of voice to detect COVID-19 and developed

a deep learning model that can predict COVID-19.

Furthermore, we provided a version of the model as an

online service (Vahedian-azimi et al., 2021).

II. METHODOLOGY

A. Dataset and subjects

Patients with COVID-19 who were admitted to

Baqiyatallah Hospital, Tehran, Iran, from July to September

2020 were enrolled in the study. The diagnosis of COVID-

19 infection was confirmed by a positive result in the test

(RT-PCR) by a sample collected from nasopharyngeal swab

as well as chest CT (WHO, 2020). Therefore, all patients in

this study were positive based on two methods. Healthy par-

ticipants were collected using a simple random sampling

method. All participants completed a questionnaire contain-

ing demographic characteristics and clinical data. The ques-

tionnaire contains questions about demographic data (age,

gender, and smoking or addiction history), clinical history

[history of asthma, chronic obstructive pulmonary disease

(COPD), laryngitis, and chronic bronchitis], and exposure

history (history of travel during COVID-19 pandemic and

contact with confirmed positive COVID-19 cases). Those

healthy individuals who had a traveling history and were

exposed to the virus were excluded from the research.

Two sessions of recordings were carried out per partici-

pant. 748 voice samples from both COVID-19 patients and

healthy participants were recorded. Samples from healthy

participants were recorded in two different sessions.

Patients’ voices were also recorded in two sessions. The first

recording from patients was compiled when they were admit-

ted to the hospital; the second recording was done two days

after their hospitalization and when the patients were on

medication. Patients’ data comprised 406 recordings (280

recordings from 140 male participants and 126 recordings

from 63 female participants). Healthy individuals’ data con-

tained 342 voice samples (160 samples from 80 male partici-

pants and 182 recordings from 91 female participants).

Figure 1 shows the participants’ demographic information.

The present study obtained the approval of the Ethics

Committee of the National Institute for Medical Research

Development (NIMAD) for the study protocol under the

code IR.NIMAD.REC.1399.056. All the participants had

given their informed consent to use their speech samples for

research purposes in this observational case-control study.

B. Voice recording

All recording sessions were conducted using ZOOM H5

handheld recorders with a 44.1 kHz sampling rate and 16-bit

quantization. A distance of 20 cm with a 45� angle from the

participant’s mouth was maintained during each recording.

Each participant was asked to take a deep breath and articu-

late a sustained vowel, videlicet /a/, as long as they could at

their comfortable pitch and a constant amplitude.

Two hospital nurses performed the recordings of voice

samples from patients. All safety measures, including wear-

ing face masks, face shields, gloves, disposable suits, and

sterilizing the recorder with alcohol pads before and after

each recording, were observed by the nurses.

C. Feature definition

Considering the effect of COVID-19 on the vocal

organs and its reflection on the acoustic signal of speech

sound, we developed a deep multi-layer artificial neural net-

work based on 25 acoustic features and one demographic

feature (i.e., sex). These parameters, which are based on dif-

ferent categories, are presented in Table I.

1. F0

F0 is also called the first harmonics (H1) and is defined

as the lowest frequency in a complex harmonic soundwave.

F0 is directly correlated to the number of times the vocal

folds open and close per second. Five parameters of F0 were

used in the software, including its mean, median, minimum,

maximum, and SD in total duration of phonation. It is

assumed that the variability of F0 is increased in COVID-19

patients as the result of damage to the vocal cords.
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2. F0 perturbation

It is considered that each cycle’s time and amplitude

are equal to the next in a harmonic soundwave. However, in

the human voice, there are always small variations in the

adjacent cycles. Any damage, edema, inflammation, and/or

additional mucus in the vocal folds could increase the

variability or irregularity in the system. The difference in

the duration of adjacent cycles is called jitter. Shimmer, on

the other hand, is the difference in the amplitudes of adja-

cent cycles. Five different formulas of jitter and six formulas

for shimmer (Boersma and Weenink, 2020) are imple-

mented in the software.

3. Harmonicity

The vibration of vocal folds is assumed as a harmonic

motion producing a complex periodic waveform. If the vibration

is aperiodic or the closure phase of vibration is not complete as

a cause of vocal fold lesion, a frication noise generates with the

turbulence of airflow through the glottis, and the amount of har-

monicity decreases. In this software, four parameters (Table I)

are considered to measure harmonicity as mentioned in Table I

(Boersma, 1993; Hillenbrand and Houde, 1996; Jotz et al.,
2002; Hillenbrand, 2011; Teixeira et al., 2013).

4. Vocal tract function

MFCCs are the most common feature used in speech

recognition software (Fraile et al., 2009; Godino-Llorente

and Gomez-Vilda, 2004). To compute MFCCs, first, the

speech signal is split into 20 ms frames, and then discrete

Fourier transform is computed from the frames. The mel-

frequency warping is the next step that changes the real lin-

ear frequency to the logarithmic scale of “mel.” Then a

series of triangular filters are used corresponding to the mel-

frequency scale, and the center frequency of each filter is

defined. As the final step, the mel spectrum is converted to

the time domain by performing a discrete cosine transform.

5. Airflow sufficiency

MPT could directly represent air volume in the lungs. It

is the total duration of a vowel sound that one can produce

FIG. 1. Participants’ demographic information.

TABLE I. Stratification of acoustic parameters implemented in the software

based on their different categories.

Category Parameters

Fundamental frequency (F0) Mean of F0

Median of F0

Minimum F0

Maximum F0

SD of F0

F0 perturbation Jitter local

Jitter local, absolute

Jitter rap

Jitter ppq5

Jitter ddp

Shimmer local

Shimmer local, dB

Shimmer apq3

Shimmer apq5

Shimmer apq11

Shimmer dda

Harmonicity Harmonics-to-noise ratio (HNR)

Noise-to-harmonics ratio (NHR)

Autocorrelation

Smoothed CPPs

Vocal tract function Mel-frequency cepstral coefficients (MFCCs)

Airflow sufficiency Maximum phonation time (MPT)

Periodicity Number of voice breaks (NVB)

Degree of voice breaks (DVB)

Fraction of locally unvoiced frames
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after a deep breath (Speyer et al., 2010). The involvement of

the lungs in the disease reduces the MPT. Another cause of

MPT reduction is inadequate closure of vocal folds and the

leakage of air through the glottis.

6. Periodicity

• Number of voice breaks: “The number of distances

among consecutive pulses which are longer than 1.25

divided by the pitch floor” (Boersma and Weenink, 2020).
• Degree of voice breaks: “This is the total duration of the

breaks among the voiced parts of the signal, divided by

the total duration” (Boersma and Weenink, 2020).
• Fraction of locally unvoiced frames: “This is the faction

of pitch frames which are analyzed as unvoiced”

(Boersma and Weenink, 2020).

D. Experimental setup

Parselmouth (Jadoul et al., 2018), a PYTHON application

programming interface (API), was used to access Praat—

computer software for the analysis of speech—to extract the

features. We standardize the feature values. In effect, we

normalize each feature such that the mean will be zero and

scale the component to unit variance. No noise removal or

signal processing software was used before extracting fea-

tures. Various ML models, including logistic regression

(LR), support vector machine (SVM), k-nearest neighbors

(KNN), decision tree (DT), Gaussian naive Bayes (GNB),

and feedforward neural network [FFNN, also known as

multi-layer perceptron (MLP)] was used. For implementing

the ML models, scikit-learn (Pedregosa et al., 2011), a pop-

ular ML package, was used. A leave-one-subject-out valida-

tion scheme was used to tune the hyper-parameters and

record the test set results. The method is essentially done by

training the model on all the subjects but one and testing the

model on that single subject and repeating the procedure n
times (where n is the number of subjects).

Feature selection is the process of decreasing the num-

ber of features when developing a model. It is possible that

there is a subset of the features that can be used by the mod-

els to improve the performance. To possibly improve the

models’ performances, we performed univariate feature

selection as well. In univariate feature selection, the best

features are determined using univariate statistical tests. In

effect, we tuned the number of features with other hyper-

parameters on the validation set. Feature selection was per-

formed to test the possibility of finding better models.

Furthermore, we have selected the top k feature where 0< k
< maximum number of features. The final results are

reported based on the leave-one-subject-out method.

Table II presents the mean and SD of all parameters sorted

by the participants’ gender and health status. The last col-

umn of the table represents F-score of the univariate statisti-

cal tests. The higher the F-score, the more important the

parameter is in the model. As can be seen in Table II, the

TABLE II. Descriptive data pertaining to F-score of the univariate statistical tests and acoustic parameters grouped by participants’ gender and health status.

Healthy mean 6 SD Patient mean 6 SD

F-scoreMale Female Male Female

MPT 14.37 6 6.13 12.40 6 5.38 6.38 6 3.60 5.74 6 2.79 366.82

CPPs 16.78 6 2.67 14.81 6 2.33 13.07 6 3.43 13.42 6 2.30 139.73

MFCCs 138.14 6 22.83 109.99 6 84 146.73 6 26.61 143.41 6 22.67 104.42

Shimlocal, dB 0.33 6 0.20 0.35 6 0.21 0.64 6 0.40 0.46 6 0.33 97.81

Shimapq11 2.88 6 1.52 2.74 6 1.72 5.59 6 3.89 3.50 6 3.09 86.49

Shimlocal 3.66 6 2.25 3.77 6 2.32 6.78 6 4.56 4.72 6 3.81 79.66

Shimapq3 1.90 6 1.26 2.07 6 1.31 3.52 6 2.47 2.50 6 2.08 67.69

HNR 19.71 6 3.11 20.29 6 3.56 15.80 6 5.25 18.87 6 4.98 68.95

Shimapq3 1.90 6 1.26 2.07 6 1.31 3.52 6 2.47 2.50 6 2.08 67.69

Shimdda 5.70 6 3.79 6.22 6 3.93 10.58 6 7.40 7.49 6 6.24 67.69

Jitt ppq5 0.25 6 0.12 0.26 6 0.18 0.47 6 0.50 0.50 6 0.59 47.32

Auto 0.98 6 0.02 0.98 6 0.02 0.93 6 0.07 0.95 6 0.06 43.78

Jitter local 0.47 6 0.26 0.50 6 0.40 0.92 6 1.14 1.03 6 1.33 42.10

Jitt local, abs 3.75E�05 2.620E�05 6.80E�05 5.45E�05 39.62

Jitter rap 0.25 6 0.16 0.29 6 0.25 0.51 6 0.73 0.59 6 0.84 34.66

Jitter ddp 0.76 6 0.48 0.88 6 0.78 1.54 6 2.18 1.78 6 2.53 34.65

NHR 0.03 6 0.03 0.02 6 0.03 0.10 6 0.13 0.06 6 0.09 30.19

Median F0 132.94 6 24.53 208.16 6 31.58 141.95 6 24.93 197.32 6 30.41 19.63

Mean F0 133.26 6 24.37 206.70 6 31.18 142.94 6 24.91 196.19 6 27.77 17.16

SD F0 3.71 6 3.63 9.81 6 12.67 9.25 6 12.17 19.85 6 20.39 16.12

Minimum F0 116.28 6 19.74 163.90 6 50.20 123.50 6 22.25 139.75 6 41.81 13.30

Maximum F0 164.47 6 47.89 250.07 6 50.87 215.94 6 99.28 263.16 6 83.51 5.36

DVB 0.43 6 1.41 0.36 6 1.07 2.94 6 9.04 2.57 6 6.21 2.25

Fraction 1.93 6 22.83 1.61 6 1.63 4.13 6 8.11 4.40 6 7.05 2.01

NVB 0.41 6 1.06 0.41 6 0.82 1.28 6 2.37 1.17 6 2.11 1.67
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values of MPT, CPPs, and MFCCs are higher than the other

features. Meanwhile, features in the category of periodicity,

i.e., degree of voice break, fraction of locally unvoiced

frames, and number of voice breaks, have the lowest value

in the model. Shimmers in general have more values than

jitters. Among shimmers, the highest value belongs to shim-

mer local dB; jitter ppq5 has the highest value among jitters.

Figure 2 shows the flow chart of data processing.

III. RESULTS

The final number of participants whose data were used

in the analysis was 374, of which 220 (58.82%) were male.

Overall, we had 748 voice samples, of which 406 (54.28%)

were for patients and 342 (45.72%) were for healthy individ-

uals. In our dataset, 440 (58.82%) and 308 (41.18%) audio

recordings belonged to men and women, respectively.

Information about models’ accuracy, precision, recall,

and F1-score is presented in Table III. The accuracy, com-

puted based on the total number of true positive (TP) and

true negative (TN) divided by the sum of TP, TN, false posi-

tive (FP), and false negative (FN), shows the percentage of

correct predictions in the test model. The precision refers to

the score of TP divided by the sum of TP and FP. Precision

delineates the capability of a model to classify a patient as

the patient. The recall is calculated based on the ratio of TP

to the sum of TP and FN. It represents the classifiers’ ability

to detect all the samples belonging to patients. In medical

situations, if the system incorrectly classifies a healthy per-

son as a patient, it is not as important as when it incorrectly

classifies a patient as a healthy person. Therefore, the recall

of the patients’ class is probably the most important measure

when evaluating a model. F1-score is the weighted average

of precision and recall. Its preference is for the models that

simultaneously have higher precision and recall.

Based on the data in Table III, representing the models’

performances, all models have acceptable performances

(more than 80% accuracy). The best results were obtained

using FFNN (�89.71% accuracy) followed by LR

(�89.43%), SVM (87.43%), KNN (85.29%), GNB

(83.29%), and DT (83.02%) based on accuracy. FFNN out-

performs all the models based on accuracy, recall, and F1-

score. LR has the highest precision.

Figure 3 delineates the detailed performance evaluation

of all investigated models to classify the voice samples, using

confusion matrices. The parameters obtained from the ele-

ments of the confusion matrix are accuracy, sensitivity, and

specificity. These parameters were used for a detailed perfor-

mance evaluation of the LR, SVM, KNN, DT, FFNN (MLP),

and GNB. The rows of each of the confusion matrices corre-

spond to the ground-truth labels, and the columns illustrate the

predicted labels. As shown in Fig. 3, the best model, i.e.,

FFNN, has the best accuracy among all other models and cor-

rectly classifies 372 recordings from patients as the patients’

recordings from 406 predicted patients’ recordings. With its

lowest number, FFNN outperforms all other models in mistak-

enly predicting patients as healthy subjects (lowest FN) as

well. This is an important metric for health-related diagnosis.

The worst model in this regard is DT, which classifies 53 pre-

dicted patients’ recordings as healthy ones.

To investigate whether the results are biased or not, the

authors performed Spearman’s rank-order correlations to

determine the relationship between the participant’s age and

the accuracy of COVID-19 detection for each age. Results

showed that the relationship between these two variables was

not statistically significant [rs(34)¼ 0.051, p¼ 0.769> 0.05].

Mann–Whitney U test was also run to study the effect

of gender on the accuracy of COVID-19 detection. ResultsFIG. 2. (Color online) Flow chart of data processing.

TABLE III. Results of accuracy, precision, recall, and F1-score for differ-

ent ML models based on the total number of true positive (TP), true nega-

tive (TN), false positive (FP), and false negative (FN).

Models Accuracya Precisionb Recallc F1-scored

SVM 87.43 86.55 88.18 86.61

LR 89.43 90.17 90.39 90.28

DT 83.02 82.67 86.94 84.75

KNN 85.29 8364 90.64 87.00

FFNN 89.71 89.63 91.63 90.62

GNB 83.29 82.16 88.42 85.18

aAccuracy ¼ ðTPþ TNÞ=ðTPþ TN þ FPþ FNÞ:
bPrecision ¼ TP=ðTPþ FPÞ:
cRecall ¼ TP=ðTPþ FNÞ:
dF1� score ¼ ½2� ðprecision� recallÞ�=ðprecisionþ recallÞ:
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showed that the relationship between these two variables

was not statistically significant (a > 0.05).

Considering all noted considerations, the FFNN model

is chosen as the operating model in the COVID-19 screening

tool introduced in the present study. We developed a web

application (Vahedian-azimi et al., 2021), which receives

the voice of the users and submits the voice to our feature

extraction module. After the features are extracted, they are

passed to the trained algorithm for detection. The returned

value will be passed to the user as the final result. All pro-

cesses take less than 30 s.

IV. DISCUSSION

This study was conducted to evaluate the feasibility of

using acoustic parameters of voice to screen and diagnose

COVID-19 using ML algorithms. Results from studies

focused on acoustic parameters of voice in patients with

FIG. 3. (Color online) Confusion matrices of different models: (a) SVM, (b) LR, (c) DT, (d) KNN, (e) FFNN (MLP), and (f) GNB. The rows of each of the

matrices correspond to the ground-truth labels, and the columns illustrate the predicted labels.
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COVID-19 (Asiaee et al., 2020; Brown et al., 2020;

Quatieri et al., 2020; Huang et al., 2020) and AI-based sur-

veys confirmed the possibility of employing AI as a tool for

screening and detection of COVID-19.

Most of the previous acoustic-based AI tools employed

cough, speech, or breathing as their input. The screening

tool introduced in this article uses the sustained phonation

of a vowel as its input. Vowel phonation has some advan-

tages in comparison to the cough or speech analysis. One of

the most important parameters in detecting the disease is

MPT, which is directly related to the volume of the lungs.

This parameter is absent in cough and speech analysis.

Meanwhile, in vowel phonation, we could assess many

parameters related to the perturbation, harmonicity, and

periodicity of vocal cord vibration. Since there is a strong

abduction in the vocal cords and a sudden burst when some-

one coughs, the analysis of many of these parameters is not

possible. Another advantage of vowel analysis in compari-

son to speech is that it is language-independent.

The unique feature of the present software is using gen-

der as a variable due to the difference between the male and

female vocal apparatus.

Unlike conventional diagnostic tests, such as RT-PCR,

chest CT, and x rays, this acoustic AI-based tool can be used

by anyone anywhere and anytime. Particularly, it is useful

for remote areas that do not have access to diagnostic tests,

and this tool can act as a clinical decision assistance tool.

AI-based tools also provide the chance to better shield phy-

sicians from unnecessary exposure to the disease. It also

minimizes COVID-19 spread by reducing unnecessary

movements and interactions. These tools can also serve as

an auxiliary tool that can be used alongside a temperature

scanner at airports, borders, or elsewhere as needed.

V. CONCLUSION

The cost, scarcity, and long duration of clinical tests are

the main factors behind the rapid spread of the COVID-19

pandemic. Motivated by the urgent need, this paper presents

a preliminary AI-based screening tool for COVID-19 using

voice quality parameters. The main idea of this instrument

is inspired by the results of our previous study as well as

evidence that has shown significant differences in many

acoustic parameters between COVID-19 patients and

healthy individuals, so these differences can be used as indi-

cators to detect COVID-19 using AI. Using ML algorithms,

we proposed and developed a mediator-centered AI-engine

for the voice-based diagnosis of COVID-19. The results

showed that the service, thanks to the risk prevention archi-

tecture, was able to screen COVID-19 with a slight diagnos-

tic error. Despite its impressive performance, it is not meant

to be a competitor or a replacement for clinical diagnostic

tests. Instead, it is a unique tool for timely, cost-effective,

and, most importantly, safe screening, thus controlling the

rampant spread of a global pandemic by virtually enabling

testing for everyone. This screening tool examines the voice

to find respiratory symptoms of COVID-19. For it to be

used as a diagnostic tool, it needs to compare voices affected

by other respiratory diseases. It should be noted that this is

an ongoing project, and the application will be upgraded

with more data in the future. A stronger voice-based

COVID-19 diagnostic study can be conducted by a larger

dataset from other respiratory diseases. Future studies can

also increase the number of subjects and the classification

accuracy using different feature extraction and classification

methods. Moreover, the train and classification stages can

be improved by using deep learning algorithms. This work

opens the door to further investigation of how automatically

analyzed respiratory patterns could be used as pre-screening

signals to aid COVID-19 diagnosis.
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