Repository of Research and Investigative Information

Repository of Research and Investigative Information

Baqiyatallah University of Medical Sciences

An Effort to Making a Colorimitric Nano-Biosensor for Vibrio cholera Detection

(2020) An Effort to Making a Colorimitric Nano-Biosensor for Vibrio cholera Detection. Current Nanoscience. pp. 793-804. ISSN 1573-4137

[img] Text
An Effort to Making a Colorimitric Nano-Biosensor for Vibrio cholera Detection.pdf

Download (116kB)

Official URL:


Background: Today, nanoparticles hold great promise in biomedical researches and applications including bacteria detection. The rapid and sensitive outcomes of bacteria detection strategies using nanoparticle conjugates become determinative, especially in bacterial outbreaks. In the current research, we focused on detecting V. cholera bacteria and its toxin using a thiocyanate/Au nanoparticle. Thiocyanate adsorbed strongly on the surface of gold nanoparticles and changed the surface by enhancing surface plasmon resonance of gold nanoparticles. Objective: This method is tried to introduce a simple and fast procedure to assay vibrio cholera. So, it is observed by the naked eyes as well. Methods: We used two antibodies (Ab) for V. cholera detection: a) a primary antibody conjugated to magnetic nanoparticles (MNPs) for trapping V. cholera bacterial cells, and b) a secondary Ab-conjugated thiocyanate-GNPs as a colorimetric detector. Then, an immuno-magnetic separation system connected to a colorimetric assay was designed based on the GNPs. The results were measured by ultraviolet-visible (UV-Vis) spectroscopy. Results: The results showed that gold nanoparticles are an appropriate optical assay for detecting biological samples in a minimum concentration and also it can be easily seen by the naked eyes. The linear range of this biosensor is 3.2 x 10(4) to 28 x 10(4) cells per ml. Conclusion: In this research, a colorimetric immune assay based on gold nanoparticles was designed to improve the sensitivity of V. cholera detection. Also, this method can be used for the detection of other biological agents.

Item Type: Article
Keywords: Vibrio cholera Thiocyanate UV-Vis spectroscopy colorimetric analysis biosensor gold nanoparticle magnetic nanoparticle colorimetric detection gold nanoparticles identification bacterial elisa size thiocyanate pathogens diagnosis sensors Biotechnology & Applied Microbiology Science & Technology - Other Topics Materials Science
Page Range: pp. 793-804
Journal or Publication Title: Current Nanoscience
Journal Index: ISI
Volume: 16
Number: 5
Identification Number:
ISSN: 1573-4137
Depositing User: مهندس مهدی شریفی

Actions (login required)

View Item View Item