Repository of Research and Investigative Information

Repository of Research and Investigative Information

Baqiyatallah University of Medical Sciences

Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells

(2011) Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. International Journal of General Medicine. pp. 413-419. ISSN 11787074 (ISSN)

[img] Text
Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells.pdf

Download (749kB)

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Background: Sulfur mustard can cause several long-term complications in the organs of individuals exposed to this toxic gas, and among these, pulmonary sequelae are the most important. More than 25 years after the Iran-Iraq war, thousands of Iranians are suffering from the chronic respiratory complications of sulfur mustard. Currently, based on several clinical findings, bronchiolitis obliterans is confirmed as the major diagnosis in these patients. Numerous studies have revealed that this disorder is strongly associated with oxidative stress due to excessive production of harmful reactive substances and decreased levels of endogenous antioxidants. Metallothioneins (MTs) are a group of low molecular weight sulfhydryl-rich intra-cellular proteins, and several isoforms have been identified in humans. MT-1A is an inducible and important MT isoform, which is transcriptionally activated by a variety of stress stimuli, such as free radicals. Methods: MT-1 mRNA expression and protein levels in endobronchial biopsy samples from 24 sulfur mustard-exposed patients and 15 unexposed control cases were evaluated by semi-quantitative reverse transcriptase polymerase chain reaction, real-time reverse transcriptase polymerase chain reaction, and immunohistochemistry. Results: mRNA-MT-1A expression levels in sulfur mustard-exposed patients were upregulated compared with normal samples. Protein expression was also markedly higher in controls than in sulfur mustard-exposed patients. Conclusion: Upregulation of MT-1A mRNA in patients who have been exposed to sulfur mustard seems to be due to oxidative stress, which is induced in an attempt to ameliorate this harmful situation by reestablishment of homeostasis, but depletion of its protein might be due to secondary consequences of sulfur mustard toxicity, which are as yet not understood. © 2011 Nourani et al.

Item Type: Article
Keywords: Airway Epithelial cells Metallothionein-1A Sulfur mustard messenger RNA metallothionein I metallothionein IA mustard gas unclassified drug adult Article bronchiolitis obliterans bronchus biopsy clinical article controlled study disease association endobronchial biopsy homeostasis human human tissue immunohistochemistry male oxidative stress protein expression real time polymerase chain reaction respiratory epithelium reverse transcription polymerase chain reaction upregulation
Divisions:
Page Range: pp. 413-419
Journal or Publication Title: International Journal of General Medicine
Journal Index: Scopus
Volume: 4
Identification Number: https://doi.org/10.2147/IJGM.S17916
ISSN: 11787074 (ISSN)
Depositing User: مهندس مهدی شریفی
URI: http://eprints.bmsu.ac.ir/id/eprint/1335

Actions (login required)

View Item View Item