(2018) DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard. Environmental Toxicology and Pharmacology. pp. 230-236. ISSN 1382-6689
Full text not available from this repository.
Abstract
Sulfur mustard (SM) is an alkylating agent that causes severe damages to the skin, eyes, and the respiratory system. DNA alkylation is one of the most critical lesions that could lead to monoadducts and cross-links, as well as DNA strand breaks. In response to these adducts, cells initiate a series of reactions to recruit specific DNA repair pathways. The main DNA repair pathways in human cells, which could be involved in the DNA SM-induced DNA damages, are base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ). There is, thus, a need for a short review to clarify which damage caused by SM is repaired by which repair pathway. Increasing our knowledge about different DNA repair mechanisms following SM exposure would lay the first step for developing new therapeutic agents to treat people exposed to SM. In this review, we describe the major DNA repair pathways, according to the DNA adducts that can be caused by SM.
Item Type: | Article |
---|---|
Keywords: | Sulfur mustard DNA damage DNA repair interstrand cross-links strand break repair base excision-repair mammalian-cells molecular-mechanisms fanconi-anemia damage proteins adducts pathway Environmental Sciences & Ecology Pharmacology & Pharmacy Toxicology |
Divisions: | |
Page Range: | pp. 230-236 |
Journal or Publication Title: | Environmental Toxicology and Pharmacology |
Journal Index: | ISI |
Volume: | 58 |
Identification Number: | https://doi.org/10.1016/j.etap.2018.01.012 |
ISSN: | 1382-6689 |
Depositing User: | مهندس مهدی شریفی |
URI: | http://eprints.bmsu.ac.ir/id/eprint/3862 |
Actions (login required)
View Item |