(2020) Poly (amidoamine) generation 6 functionalized Fe3O4@SiO2/GPTMS core-shell magnetic NPs as a new adsorbent for Arsenite adsorption: kinetic, isotherm and thermodynamic studies. Journal of Environmental Health Science and Engineering. pp. 253-265. ISSN 2052-336X
Text
Poly (amidoamine) generation 6 functionalized Fe3O4@SiO2GPTMS core-shell magnetic NPs as a new adsorbent for Arsenite adsorption kinetic, isotherm and thermodynamic studies.pdf Download (1MB) |
Abstract
In this survey a new route has been developed the preparation of poly (amidoamine) generation 6 (PAMAM-G6) dendrimer functionalized Fe3O4/SiO2 nanoparticle and was used for arsenite (As (III)) adsorption. SiO2 was first grafted onto the surface of Fe3O4 to formation a core-shell structure. Then the introduction of epoxy rings were done by hydrolysis of methylsilane groups of 3-Glycidoxypropyltrimethoxysilane (GPTMS) on OH groups of SiO2 and afterwards, PAMAM-G6 reacted with epoxy rings of GPTMS to obtain a multiamino magnetic adsorbent. The as-prepared nanocomposite was characterized by TEM, Zeta potential, FESEM, VSM, FTIR, Raman and XPS techniques. The effects of reaction time from 5 to 50 min, initial As (III) concentration in the range of 1-10 mgL(-1), initial adsorbent concentration in the range of 10-50 mgL(-1) and initial pH in the range 3-8 were studied. The resulting of kinetic and isotherm models displays high adsorption affinity (233 mg/g) for As (III) and the adsorbent can reach the adsorbent can reach the adsorption equilibrium at a neutral pH (7). The As (III) loaded nanocomposite could be separated readily from aqueous solution by magnetic and regenerated simply via NaOH. The study of the adsorption procedure showed that the pseudo-second order kinetics and Langmuir isotherm well-fitted with the experimental data of As (III) adsorption onto nanocomposite.
Item Type: | Article |
---|---|
Keywords: | Poly (amidoamine) generation 6 Arsenite Isotherm Kinetic aqueous-solutions waste-water removal cu2+ ni2+ nanocomposite optimization performance extraction surface Engineering Environmental Sciences & Ecology |
Page Range: | pp. 253-265 |
Journal or Publication Title: | Journal of Environmental Health Science and Engineering |
Journal Index: | ISI |
Volume: | 18 |
Number: | 1 |
Identification Number: | https://doi.org/10.1007/s40201-020-00461-4 |
ISSN: | 2052-336X |
Depositing User: | مهندس مهدی شریفی |
URI: | http://eprints.bmsu.ac.ir/id/eprint/8795 |
Actions (login required)
View Item |