Repository of Research and Investigative Information

Repository of Research and Investigative Information

Baqiyatallah University of Medical Sciences

A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

(2021) A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis. Journal of Neuroscience Methods. p. 19. ISSN 0165-0270

[img] Text
A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis.pdf

Download (6MB)

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

Background: Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. New method: This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. Results: The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99, SE of 98.4, SP of 99.6, F1 of 98.9, and FDR of 0.4 using the support vector machine with RBF kernel (RBFSVM) classifier. Comparison with existing methods: The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. Conclusions: According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.

Item Type: Article
Keywords: Depression Major depressive disorder (MDD) Machine learning Electroencephalogram (EEG) Computer-aided diagnosis (CAD) epileptic seizure detection default mode network diagnosis frequency features synchronization schizophrenia entropy system loreta Biochemistry & Molecular Biology Neurosciences & Neurology
Page Range: p. 19
Journal or Publication Title: Journal of Neuroscience Methods
Journal Index: ISI
Volume: 358
Identification Number: https://doi.org/10.1016/j.jneumeth.2021.109209
ISSN: 0165-0270
Depositing User: مهندس مهدی شریفی
URI: http://eprints.bmsu.ac.ir/id/eprint/9560

Actions (login required)

View Item View Item